Перспективи використання активного балансування в багатомодульних акумуляторних батареях
Анотація
Досліджено вплив дисбалансу комірок на ефективність багатомодульних літій-іонних акумуляторних батарей. Проблема дисбалансу призводить до суттєвого зниження корисної ємності та запасу ходу електромобілів. Експеримент показав, що застосування активного балансира на модулі зі зношеними комірками дозволило знизити максимальний дисбаланс з 220 мВ до 45 мВ. Це призвело до збільшення реального запасу ходу електромобіля з 82 км до 128 км, що становить приріст у 35%. Результати підтверджують високу ефективність активного балансування в порівнянні з пасивним балансування як засобу відновлення корисної ємності та подовження життєвого циклу АБ в електротранспорті та системах накопичення енергії.
Посилання
H. S. Hemavathi, “Overview of cell balancing methods for Li-ion battery technology,” Energy Storage, vol. 3, p. e203, 2021, doi: 10.1002/est2.203.
Z. B. Omariba, L. Zhang, and D. Sun, “Review of Battery Cell Balancing Methodologies for Optimizing Battery Pack Performance in Electric Vehicles,” IEEE Access, vol. 7, pp. 129335–129352, 2019, doi: 10.1109/ACCESS.2019.2940090.
X. Liu, W. Li, X. Guo, B. Su, S. Guo, Y. Jing, and X. Zhang, “Advancements in Energy-Storage Technologies: A Review of Current Developments and Applications,” Sustainability, vol. 17, no. 18, Art. no. 8316, 2025, doi: 10.3390/su17188316.
S. Li, C. Zhang, Y. Zhao, Y. Liu, Z. Chen, Y. Chen, et al., “Effect of thermal gradients on inhomogeneous degradation in lithium-ion batteries,” Communications Engineering, vol. 2, p. 74, 2023, doi: 10.1038/s44172-023-00124-w.
A. Ashraf, B. Ali, M. S. A. Al Sunjury, and P. Tricoli, “A Comprehensive Review of the Art of Cell Balancing Techniques and Trade-Offs in Battery Management Systems,” Energies, vol. 18, no. 13, p. 3321, 2025, doi: 10.3390/en18133321.
E. Fraccaroli, S. Jang, L. Stach, et al., “To Balance or to Not? Battery Aging-Aware Active Cell Balancing for Electric Vehicles,” arXiv preprint arXiv:2401.03124, Jan. 2024, doi: 10.48550/arXiv.2401.03124.
O. Bondarenko, and D. Lipko, “Using partial charge-discharge cycle of battery to increase its lifespan,” Technology and Design in Electronic Equipment, no. 3–4, pp. 9–15, 2023, doi: 10.15222/TKEA2023.3-4.09.
O. Bondarenko, and D. Lipko, “Modified active balancer for use in multi-module batteries,” Technology and Design in Electronic Equipment, no. 1–2, pp. 11–23, 2024, doi: 10.15222/TKEA2024.1-2.11.
N. Khan, C. A. Ooi, A. Alturki, M. Amir, Shreasth, and T. Alharbi, “A critical review of battery cell balancing techniques, optimal design, converter topologies and performance evaluation for optimizing storage system in electric vehicles,” Energy Reports, vol. 11, pp. 4999–5032, 2024, doi: 10.1016/j.egyr.2024.04.041.
D. Lipko, and O. Bondarenko, “Development of a DC-DC Converter for Active Battery Balancing Systems in a Format of Student Competition,” Microsystems, Electronics and Acoustics, pp. 316127.1–316127.8, Dec. 2024, doi: 10.20535/2523-4455.mea.316127.
D. Lipko, and O. Bondarenko, “Modified Active Balancer for Multi-Module Battery Pack,” in Proc. 19th Biennial Baltic Electronics Conf. (BEC), Tallinn, Estonia, 2024, pp. 1–5, doi: 10.1109/BEC61458.2024.10737985.
J. Cao, B. Xia, and J. Zhou, “An Active Equalization Method for Lithium-ion Batteries Based on Flyback Transformer and Variable Step Size Generalized Predictive Control,” Energies, vol. 14, no. 1, p. 207, 2021, doi: 10.3390/en14010207.
A. Farzan Moghaddam, and A. Van den Bossche, “An Efficient Equalizing Method for Lithium-Ion Batteries Based on Coupled Inductor Balancing,” Electronics, vol. 8, no. 2, p. 136, 2019, doi: 10.3390/electronics8020136.
Z. C. Gao, C. S. Chin, W. D. Toh, J. Chiew, and J. Jia, “State-of-Charge Estimation and Active Cell Pack Balancing Design of Lithium Battery Power System for Smart Electric Vehicle,” Journal of Advanced Transportation, Art. no. 6510747, 14 p., 2017, doi: 10.1155/2017/6510747.
S. Narayanaswamy, M. Kauer, S. Steinhorst, M. Lukasiewycz, and S. Chakraborty, “Modular Active Charge Balancing for Scalable Battery Packs,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 3, pp. 974–987, Mar. 2017, doi: 10.1109/TVLSI.2016.2611526.
L. Li, Z. Li, J. Zhao, and W. Guo, “Lithium-ion battery management system for electric vehicles,” International Journal of Performability Engineering, vol. 14, no. 12, pp. 3184–3194, 2018, doi: 10.23940/ijpe.18.12.p28.31843194.
D. Lee, S. Kang, and C. B. Shin, “Modeling the Effect of Cell Variation on the Performance of a Lithium-Ion Battery Module,” Energies, vol. 15, no. 21, p. 8054, 2022, doi: 10.3390/en15218054.
P. S. Babu, and K. Ilango, “Comparative Analysis of Passive and Active Cell Balancing of Li Ion Batteries,” in Proc. 3rd Int. Conf. Intelligent Computing Instrumentation and Control Technologies (ICICICT), Kannur, India, 2022, pp. 711–716, doi: 10.1109/ICICICT54557.2022.9917778.
W. Jiang, and F. Zhou, “Active Battery Balancing System for High Capacity Li-Ion Cells,” Energies, vol. 18, no. 23, p. 6371, 2025, doi: 10.3390/en18236371.
C. Wei, and X. Li, “Review of Bidirectional DC-DC Converters for Electric Vehicle Energy Management Systems,” in Proc. 7th Int. Conf. Smart Grid and Smart Cities (ICSGSC), Lanzhou, China, 2023, pp. 432–436, doi: 10.1109/ICSGSC59580.2023.10319186.
A. Farzan Moghaddam, and A. Van den Bossche, “A Ćuk Converter Cell Balancing Technique by Using Coupled Inductors for Lithium-Based Batteries,” Energies, vol. 12, no. 15, p. 2881, 2019, doi: 10.3390/en12152881.
V. Chandran, C. K. Patil, A. Karthick, D. Ganeshaperumal, R. Rahim, and A. Ghosh, “State of Charge Estimation of Lithium-Ion Battery for Electric Vehicles Using Machine Learning Algorithms,” World Electric Vehicle Journal, vol. 12, no. 1, p. 38, 2021, doi: 10.3390/wevj12010038.
H. Wu, H. Zhao, J. Yang, D. Qin, and J. Chen, “Battery Active Grouping and Balancing Based on the Optimal Energy Transfer Direction,” Sustainability, vol. 17, no. 11, p. 5219, 2025, doi: 10.3390/su17115219.
X. Dorronsoro, E. Garayalde, U. Iraola, and M. Aizpurua, “Modular battery energy storage system design factors analysis to improve battery-pack reliability,” Journal of Energy Storage, vol. 54, p. 105256, 2022, doi: 10.1016/j.est.2022.105256.
A. Tuluhong, Z. Xu, Q. Chang, and T. Song, “Recent Developments in Bidirectional DC-DC Converter Topologies, Control Strategies and Applications in Photovoltaic Power Generation Systems: A Comparative Review and Analysis,” Electronics, vol. 14, no. 2, p. 389, 2025. doi: 10.3390/electronics14020389.
D. O. Lipko, Device for Monitoring Battery Parameters, M.Sc. thesis, Dept. Micro- and Nanosystems Technology, Kyiv Polytechnic Institute, Kyiv, Ukraine, 77 p. [Online]. Available: https://ela.kpi.ua/handle/123456789/38755.
Авторське право (c) 2025 Дмитро Ліпко, Арсеній Найдьонов, Юлія Кожушко, Юлія Бондаренко, Павло Сафронов, Олександр Бондаренко

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.