Medium wavelength infrared HgCdTe discrete photodetectors

  • Z. F. Tsybrii V. Ye. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine https://orcid.org/0000-0003-1718-5569
  • K. V. Andreeva V. Ye. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine
  • M. V. Apatska V. Ye. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine
  • S. G. Bunchuk V. Ye. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine
  • M. V. Vuichyk V. Ye. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine https://orcid.org/0000-0002-2893-8346
  • O. G. Golenkov V. Ye. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine https://orcid.org/0000-0001-8009-7161
  • N. V. Dmytruk V. Ye. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine
  • V. V. Zabudsky V. Ye. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine https://orcid.org/0000-0003-2033-8730
  • I. O. Lysiuk V. Ye. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine
  • K. V. Svezhentsova V. Ye. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine https://orcid.org/0000-0002-4309-556X
  • M. I. Smolii V. Ye. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine
  • F. F. Sizov V. Ye. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine
Keywords: HgCdTe, photodiode, IR region, I-V characteristic

Abstract

The authors have developed the topology and technological fabrication route for discrete photodiodes (Θ = 0,5—1,5 mm) for the mid-wavelength infrared (MWIR) range, based on the mercury-cadmium-telluride (MCT) epitaxial layers. The paper describes technological processes of MCT photodiodes fabrication, including CdTe passivation layers growth, photolithographic processes for the formation of windows for B+ implantation, formation of metallic coatings, chemical surface treatments, cutting of the wafer on the discrete chips, assembling and bonding of the electrical contacts. Optical, photoelectrical and current-voltage characteristics of discrete MCT photodiodes for the spectral range of 3—5 microns are investigated in order to achieve the necessary operational parameters. FTIR transmission spectra were measured to evaluate samples quality and find the composition of x of Hg1–xCdxTe epitaxial layers grown by liquid phase epitaxy method. The limiting characteristics of photodiodes, which are determined by the magnitude of the detector current at the reverse bias and the product of the dynamic resistance at zero bias by the area of the photosensitive element R0Ad at the operating temperature of 77 K were discussed. The requirement for the parameter R0Ad was estimated for the operation of photodiodes of the mid wavelength infrared range in the BLIP (background limited performance) mode for the angles of view qi = 90° and qi = 30°: R0Ad ≥ 5·103 Ω·cm2. It was found from dynamical resistance characteristics that without bias in these MCT MWIR photodiodes R0Ad ≈ (0,57—1,08) Ω · 105 cm2 and these photodiodes can operate in BLIP mode.

References

Michael Kinch. Fundamentals of Infrared Detector

Materials. Bellingham, Washington, SPIE Press, 2007, 173 p.

Sizov F.F. Fotoelektronika dlya sistem videniya

[Photoelectronics for imaging systems]. Kyiv, Akademperiodyka,

, 455 p. (Rus)

MCT’s Advantages as an Infrared Imaging Material. http://www.leonardodrs.com/media/4279/201306_advantages_of_mct.pdf

Peter Capper, James Garland. Mercury Cadmium Telluride: Growth, Properties and Applications. Wiley and Sons, 2011.

Filachev A.M., Taubkin I.I., Trishenkov M.A. Sovremennoe sostoyanie i magistral`nye napravleniya razvitiya tverdotel`noi fotoelektroniki. [Current state and main directions of development of solid-state photoelectronics]. Moskow, Phizmatkniga, 2010, 125 p. (Rus).

Sizov F. IR-photoelectronics: photon or thermal detectors? Outlooks. Sensor Electronics and Ìicrosystem Technologies, 2015, vol. 12, iss. 1, pp. 26-52.

Wimmers J.T., Davis R.M., Niblack C.A., Smith D.S. Indium antimonide detector technology at Cincinnati Electronics Corporation. Proc. SPIE, 1988, vol. 930, pp.125-138.

Chu J., Sher A. Physics and properties of narrow-gap semiconductors. Springer, N.Y., 2008, 606 p.

Saxena R. S., Bhan R. K., Sharma R. K. Sensitivity analysis of MWIR HgCdTe photodiodes physics of semiconductor devices. International Workshop on Physics of Semiconductor Devices. https://doi.org/10.1109/IWPSD.2007.4472557

Sizov F., Tsybrii Z., Vuichyk M., Andreyeva K., Apatska M., Bunchuk S., Dmytruk N., Smolii M. HgCdTe photodiodes for infrared mid-wavelength region. Sensor Electronics and Ìicrosystem Technologies, 2016, vol. 13, no. 1, pp. 49-55.

Sizov F., Zabudsky V., Golenkov O., Andreeva K., Guzenko G.O., Lysiuk ². KIPiA, 2007, no. 1, pp. 4-7. (Rus)

Published
2017-12-26
How to Cite
Tsybrii, Z. F., Andreeva, K. V., Apatska, M. V., Bunchuk, S. G., Vuichyk, M. V., Golenkov, O. G., Dmytruk, N. V., Zabudsky, V. V., Lysiuk, I. O., Svezhentsova, K. V., Smolii, M. I., & Sizov, F. F. (2017). Medium wavelength infrared HgCdTe discrete photodetectors. Technology and Design in Electronic Equipment, (6), 8-13. https://doi.org/10.15222/TKEA2017.6.08