Technology and design in electronic equipment, 2023, no. 1-2, pp. 3-8.
DOI: 10.15222/TKEA2023.1-2.03
UDC 621.315.592
I-V-characteristics of Schottky diodes based on graphene/n-Si heterostructures
(in Ukrainian)
Koziarskyi I. P.1, Ilashchuk M. I.1, Orletskyi I. G.1, Koziarskyi D. P.1, Myroniuk L. A.2, Myroniuk D. V.2, Ievtushenko A. I.2, Danylenko I. M.3, Maistruk E. V.1

Ukraine, Chernivtsi, 1Yuriy Fedkovych Chernivtsi National University; Kyiv, 2Institute for Problems of Materials Sciences, NAS of Ukraine, 3V. Ye. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine.

The authors investigated the electrical properties of graphene/n-Si Schottky diode heterostructures obtained by mechanical exfoliation of graphite to thin-layer graphene in an aqueous solution of polyvinylpyrrolidone as a result of the dynamics of the dispersed graphite mixture under the action of a mechanical blender. The graphene/n-Si structures differed in terms of duration of applying graphene films on n-Si substrates: 5, 10 and 15 min. The temperature of the substrates did not exceed 250°C. The formation of graphene layers was confirmed by the study of Raman scattering spectra in the frequency range of 1000-3250 cm-1, which show G and 2D bands with the features characteristic of low-layer graphene. The dependence of the electrical properties of the investigated surface-barrier graphene/n-Si structures on the duration of sputtering of graphene films was established. It was found that the value of the contact potential difference φk was 1.35, 1.32 and 1.27 V and the series resistance at room temperature was 3.4·106, 3.4·103 and 3.7·103 Ω for structures with the duration of graphene layer deposition 5, 10 and 15 min, respectively. The formation of both forward and reverse currents was dominated by the tunneling of charge carriers through the potential barrier.

Keywords: Schottky diodes, heterostructures, low-layer graphene/n-Si, electrical properties.

Received 10.02 2023
  1. Morozov S. V., Novoselov K. S., Katsnelson M. I. et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett., 2008, vol. 100, iss. 1, p. 016602. https://doi.org/10.1103/PhysRevLett.100.016602
  2. Novoselov K. S., Geim A. K., Morozov S. V. et al. Two-dimensional gas of massless Dirac fermions in grapheme. Nature, 2005, vol. 438, pp. 197200. https://doi.org/10.1038/nature04233
  3. Novoselov K. S., Geim A. K., Morozov S. V. et al. Electric field effect in atomically thin carbon films. Science, 2004, vol. 306, iss. 5696, pp. 666669. https://doi.org/10.1126/science.1102896
  4. Katsnelson M. I. Graphene: carbon in two dimensions. Materials Today, 2007, vol. 10, pp. 2027. https://doi.org/10.1016/S1369-7021(06)71788-6
  5. Geim A. K., Novoselov K. S. The rise of grapheme. Nature Materials, 2007, vol. 6, pp. 183191. https://doi.org/10.1038/nmat1849
  6. Soldano C., Mahmood A., Dujardin E. Production, properties and potential of grapheme. Carbon, 2010, vol. 48, pp. 21272150. https://doi.org/10.1016/j.carbon.2010.01.058
  7. Bonaccorso F., Sun Z., Hasan T., Ferrari A. C. Graphene photonics and optoelectronics. Nature Photonics, 2010, vol. 4, pp. 611 622. https://doi.org/10.1038/nphoton.2010.186
  8. Bartolomeo A. D. Graphene Schottky diodes: an experimental review of the rectifying graphene/semiconductor heterojunction. Physics Reports, 2016, vol. 606, pp. 158. https://doi.org/10.1016/j.physrep.2015.10.003
  9. Bae S., Kim H., Lee Y. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010, vol. 5, pp. 574578. https://doi.org/10.1038/nnano.2010.132
  10. Wang Y., Chen X., Zhong Y. et al. Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl. Phys. Lett., 2009, vol. 95, p. 063302. https://doi.org/10.1063/1.3204698
  11. Tongay S., Schumann T., Miao X. et al. Tuning Schottky diodes at the many-layer-graphene/semiconductor interface by doping. Carbon, 2011, vol. 49, pp. 20332038. https://doi.org/10.1016/j.carbon.2011.01.029
  12. Schwierz F. Graphene transistors. Nature Nanotechnology, 2010, vol. 5, pp. 487496. https://doi.org/10.1038/nnano.2010.89
  13. Schedin F., Geim A. K., Morozov S. V., Hill E. Detection of individual gas molecules adsorbed on grapheme. Nature Materials, 2007, vol. 6, pp. 652655. https://doi.org/10.1038/nmat1967
  14. Vivekchand S. R. C., Rout C. S., Subrahmanyam K. S. et al. Graphene-based electrochemical supercapacitors. J. Chem. Sci., 2008, vol. 120, iss. 1, pp. 913. https://doi.org/10.1007/s12039-008-0002-7
  15. Tadjer M. J., Anderson T. J., Myers-Ward R. L. et al. Step edge influence on barrier height and contact area in vertical heterojunctions between epitaxial graphene and n-type 4H-SiC. Appl. Phys. Lett., 2014, vol. 104, p. 073508. https://doi.org/10.1063/1.4866024
  16. Rehman M. A., Akhtar I., Choi W. et al. Influence of an Al2O3 interlayer in a directly grown graphene-silicon Schottky junction solar cell. Carbon, 2018, vol. 132, pp. 157164. https://doi.org/10.1016/j.carbon.2018.02.042
  17. Yi M., Shen Z., Zhang X., Ma S. Achieving concentrated graphene dispersions in water/acetone mixtures by the strate gyoftailoring Hansen solubility parameters. J. Phys. D: Appl. Phys., 2013, vol. 46, p. 025301. https://doi.org/10.1088/0022-3727/46/2/025301
  18. Varrla E., Paton K. R., Backes C. et al. Turbulence-assisted shearex foliation of graphene using household detergentand a kitchen blender. Nanoscale, 2014, vol. 6, p. 11810. https://doi.org/10.1039/C4NR03560G
  19. Yi M., Shen Z. Kitchen blender for producing high-quality few-layer grapheme. Carbon, 2014, vol. 78, pp. 622626. https://doi.org/10.1016/j.carbon.2014.07.035
  20. Nair R. R., Blake P., Grigorenko A. N. et al. Fine structure constant defines visual transparency of graphene. Science, 2008, vol. 320, p. 1308. https://doi.org/10.1126/science.1156965
  21. Biswas R. Modeling the liquid phase exfoliation of graphene in polar and nonpolar solvents. Bioint. Res. Appl. Chem., 2022, vol. 12, iss. 6. pp. 74047415. https://doi.org/10.33263/BRIAC126.74047415
  22. O'Connell M. J., Boul P., Ericson L. M. et al. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett., 2001, vol. 342, pp. 265271. http://dx.doi.org/10.1016/S0009-2614(01)00490-0
  23. Mohamed M., Tripathy M., Majeed A. A. Studies on the thermodynamics and solute-olvent interaction of Polyvinylpyrrolidone wrapped single walled carbon nanotubes (PVP-SWNTs) in water over temperature range 298.15 313.15 K. Arabian Journal of Chemistry, 2013, vol. 10, iss. 2, pp. S1726S1730. https://doi.org/10.1016/j.arabjc.2013.06.022
  24. Mohamed M., Shah S. A. A., Mohamed R. et al. Solute Solvent Interactions of Polyvinyl Pyrrolidone Wrapped Single Walled Carbon Nanotubes (PVP-SWNTs) in Water by Viscometric Studies. Oriental Journal of Chemistry, 2013, vol. 29, iss. 2, pp. 539544. http://dx.doi.org/10.13005/ojc/290221
  25. Ferrari A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications, 2007, vol. 143, pp. 4757. https://doi.org/10.1016/j.ssc.2007.03.052
  26. Ferrari A. C., Meyer J. C., Scardaci V. et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett., 2006, vol. 97, p. 187401. https://doi.org/10.1103/PhysRevLett.97.187401
  27. Sharma B. L., Purohit R. K. Semiconductor heterojunctions. Oxford, Pergamon Press, 1974, 216 p.