Порівняння методів модуляції квазіімпедансного інвертора в автономній системі живлення з накопичувачами електроенергії

  • Дмитро Захарченко Центр протимінної діяльності Міністерства оборони України, Національний університет «Чернігівська політехніка», Чернігів, Україна https://orcid.org/0000-0003-3009-5648
  • Сергій Степенко Chernihiv Polytechnic National University https://orcid.org/0000-0001-7702-6776
Ключові слова: накопичувач електроенергії, автономна система живлення, метод модуляції, квазіімпедансний інвертор

Анотація

Комплексно розглянуто сучасну автономну систему енергоживлення з накопичувачами електроенергії, приділено увагу всім значним її компонентам. Описано сучасні системи керування квазіімпедансним інвертором у складі такої системи, представлено переваги та недоліки кожної з них, методи розрахунку головних параметрів, запропоновано побудову систем керування за допомогою програмного забезпечення MatLab/Simulink. Проведене моделювання дозволило вибрати оптимальний метод керування для дворівневого квазіімпедансного інвертора у складі зазначеної системи живлення.

Посилання

Georgious R., Refaat R., Garcia J., Daoud A. A. Review on energy storage systems in microgrids, Electronics, 2021, vol. 10, iss. 17, 2134. https://doi.org/10.3390/electronics10172134

Annuk A., Yaïci W., Lehtonen M. ET AL. Simulation of energy exchange between single prosumer residential building and utility grid. Energies, 2021, vol. 14, iss. 6, 1553. https://doi.org/10.3390/en14061553

Umarani D., Ramalingam Si. Modeling and control of quasi Z-source cascaded H-bridge multilevel inverter for grid connected photovoltaic systems. Energy Procedia, 2016, vol. 90, pp. 250 – 259. https://doi.org/10.1016/j.egypro.2016.11.192

Ghodsi M., Barakati M., Wu B. Extended switched-inductor quasi-Z-source inverter: Modeling and prototype realization. International Transactions on Electrical Energy Systems, 2018, vol. 29, e2744. https://doi.org/10.1002/etep.2744

Abdelhakim A., Davari P., Blaabjerg F., Mattavelli P. Analysis and design of the quasi-Z-source inverter for wide range of operation. 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), Padua, Italy, 2018, pp. 1 – 6, https://doi.org/10.1109/COMPEL.2018.8458486

Gitizadeh M., Nayeripour M., Akrami A. Maximum constant boost control for QZSI in a fuel cell system. 2012 Second Iranian Conference on Renewable Energy and Distributed Generation, Tehran, Iran, 2012, pp. 7 – 11, https://doi.org/10.1109/ICREDG.2012.6190473

Barath N., Soundarrajan A., Stepenko S. et al. Interleaved Single-phase quasi-switched boost and active quasi-z-source inverter. 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 2020, pp. 874 – 878, https://doi.org/10.1109/ELNANO50318.2020.9088907

Fesenko A. P., Yershov R. D., Stepenko S. A. Review and justification of the choice of storage batteries for an autonomous power supply system based on photovoltaic converters. Technical Sciences and Technologies, 2017, no. 1(7), pp. 177 – 186. http://tst.stu.cn.ua/article/view/105255 (Ukr)

Zakharchenko D., Stepenko S. Review and justification of the energy storage devices selection for electric power facilities operation. Technical Sciences and Technologies, 2021, no. 4(22), pp. 198 – 209. https://doi.org/10.25140/2411-5363-2020-4(22)-198-209 (Ukr)

Dao V.Q., Dinh M.C., Kim C.S. et al. Design of an effective state of charge estimation method for a lithium-ion battery pack using extended kalman filter and artificial neural network. Energies, 2021, vol. 14, iss. 9, 2634. https://doi.org/10.3390/en14092634

Zakharchenko D. Review and research of methods for controlling the operation of a quasi-Z-inverter connected to the grid. Abstracts of the reports of the II International Scientific and Practical Conference “Novel Technologies of Smart Society (NTSS-2021)”: Part 1, Ukraine, Chernihiv, 2021, pp. 161 – 163. http://ir.stu.cn.ua/123456789/25793 (Ukr)

Zhu M., Yu K., Luo F. L. Switched inductor Z-source inverter. IEEE Transactions on Power Electronics, 2010, vol. 25, pp. 2150 – 2158. https://doi.org/10.1109/TPEL.2010.2046676

Sahan B., Vergara A. N., Henze N. et al. A single-stage PV module integrated converter based on a low-power current-source inverter, IEEE Transactions on Industrial Electronics, 2008, vol. 55, no. 7, pp. 2602 – 2609 https://doi.org/10.1109/TIE.2008.924160

Xu P., Zhang X., Zhang C. -w. et al. Study of Z-source inverter for grid-connected PV systems, 2006 37th IEEE Power Electronics Specialists Conference, Jeju, Korea (South), 2006, pp. 1 – 5, https://doi.org/10.1109/pesc.2006.1712266

DebBarman S., Roy T. Different types of PWM techniques analysis for Z-source inverter, IOSR Journal of Electrical and Electronics Engineering, 2014, vol. 9, iss. 3, pp. 9 – 17. https://doi.org/10.9790/1676-09340917

Roncero-Clemente C., Husev O., Stepenko S. et al. Interleaved single-phase quasi-Z-source inverter with special modulation technique, 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), Kyiv, UKraine, 2017, pp. 593 – 598. https://doi.org/10.1109/UKRCON.2017.8100310

Lakhimsetty S. Simulation of Z-source inverter using maximum boost control PWM technique, International Journal of Simulation Systems, 2013, vol. 2, iss. 7, pp. 49 – 59. https://doi.org/10.9790/1676-09340917

Roncero-Clemente C., Stepenko S., Husev O. et al. Maximum boost control for interleaved single-phase Quasi-Z-Source inverter, IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 2017, pp. 7698 – 7703. https://doi.org/10.1109/IECON.2017.8217349

Umarania D., Seyezhai Dr.R. Modeling and control of Quasi Z-Source Cascaded H-bridge multilevel inverter for grid connected photovoltaic systems, Energy Procedia, 2016, vol. 90, pp. 250 – 259. https://doi.org/10.1016/j.egypro.2016.11.192

Опубліковано
2025-06-30
Як цитувати
Захарченко, Д., & Степенко, С. (2025). Порівняння методів модуляції квазіімпедансного інвертора в автономній системі живлення з накопичувачами електроенергії. Технологія та конструювання в електронній апаратурі, (1–2), 17-26. https://doi.org/10.15222/TKEA2025.1-2.17