Теплові характеристики рідинного теплообмінника приймально-передавального модуля АФАР
Анотація
Проведено чисельне моделювання температурного поля та загального теплового опору рідинного теплообмінника у вигляді холодної плити із вбудованим вигнутим одинарним контуром охолодження та двостороннім розташуванням тепловиділяючих НВЧ-елементів, призначеного для охолодження багатоканального приймально-передавального модуля. Дослідження проводилися за різних значень витрат рідкого теплоносія (Тосол А 65).
Посилання
Guz’ V. I., Lipatov V. P., Andrusenko N. I. et al. Multifunctional radar systems. Radioelectronics and Communications Systems, 2007, vol. 50, iss. 1, pp. 1–8, https://doi.org/10.3103/S0735272707010013
Brookner E. Radar and phased array breakthroughs. Microwave Journal, 2015, vol. 58, iss. 11, pp. 20–36.
Borisov O. V., Zubkov A. M., Ivanov K. A. et al. [Broadband 70-watt GaN X-band power amplifier]. Elektronnaya Tekhnika. Seriya 2. Poluprovodnikovyye pribory, 2014, iss. 2 (233), pp. 4–9 (Rus).
Radar technology advancements and new applications, Microwave Journal, 2017, vol. 60, iss. 3, pр. 82–96. (Pasternack Enterprises, Inc., Irvine, Calif. Available at: https://www.pasternack.com/t-Radar-Technology-Advancements-and-New-Applications.aspx)
Herd J.S., Conway M.D. The evolution to modern phased array architectures. Proc. IEEE, 2016, vol. 3, iss. 104, pp. 519–529, https://doi.org/10.1109/JPROC.2015.2494879
Pengelly R.S., Wood S.M., Milligan J.W. et al. A review of GaN on SiC high electron-mobility power transistors and MMICs. IEEE Transactions on Microwave Theory and Techniques, 2012, vol. 6, iss. 60, pp. 1764–1783, https://doi.org/10.1109/TMTT.2012.2187535
Choi G.W., Kim H. J., Hwang W. J. et al. High efficiency class-e tuned doherty amplifier using GaN HEMT. 2009 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, рp. 925–928, https://doi.org/10.1109/mwsym.2009.5165849
Kuliev M.V. [Overview of modern GaN transistors and directions of development], Elektronnaya tekhnika. Seriya 2. Poluprovodnikovyye pribory, 2017, iss. 2 (245), pp. 18–28. (Rus)
Rathod S., Sreenivasulu K., Beenamole K. S., Ray K. P. Evolutionary trends in transmit/receive module for active phased array radars. Defence Science Journal, 2018, vol. 68, iss. 6, pp. 553–559, https://doi.org/10.14429/dsj.68.12628
Savenko V. A. [Unification of design solutions for the construction of receiving and transmitting modules APAA of various ranges]. Proc. of All-Russian Conference “Electronics and Microelectronics Microwave”, St. Petersburg, 2013, 5 p. Available at: www.mwelectronics.ru/2013/Oral/5/05_Doclad_Savenko-izmenenny%60i%60.pdf (Rus)
Kopp B. A., Billups A. J., Luesse M. H. Thermal analysis and considerations for gallium nitride microwave power amplifier packagin. Microwave Journal, 2001, vol. 44, iss.12, pp. 72–82.
Timoshenkov V., Khlybov A., Rodionov D. et al. [Thermo researching of X-band micro-wave amplifier]. VIII All-Russian Scientific and Technical Conference “Problems of development of promising micro-and nanoelectronic systems” (MES-2018), Russia, Moscow, 2018, iss. 3, pp. 98–102. https://doi.org/10.31114/2078-7707-2018-3-98-102 (Rus)
Wilson J. Challenges in thermal control of military electronics systems. Electronics cooling, 2003. Available at: https://www.electronics-cooling.com/2003/02/challenges-in-thermal-control-of-military-electronics-systems/
Wang L., Wang Z., Wang C. et al. Multiobjective optimization method for multichannel microwave components of active phased array antenna. Mathematical Problems in Engineering, 2016, vol. 2016, article ID 5398308, 7 p., http://dx.doi.org/10.1155/2016/5398308
Scott M., SAMPSON MFR active phased array antenna. IEEE International Symposium on Phased Array Systems and Technology, 2003, pp. 119–123, https://doi.org/10.1109/past.2003.1256967
Nikolaenko Yu. E., Baranyuk O. V., Reva S. A., Rohachov V. A. [CFD-modeling of the temperature field of the radiator casing of the transmitting module of the active phased antenna arrays with air cooling]. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, no. 1–2, pp. 27–33, http://dx.doi.org/10.15222/TKEA2019.1-2.27 (Ukr)
Swadish M.S., Sangram K.P. Thermal design and analysis of an air cooled X-band phased array antenna. 11th International Radar Symposium India 2017 (IRSI-17). Available at: https://www.researchgate.net/publication/321965870
Parlak M., Yaban M. Thermal solution of high flux phased radar antenna for military application. Proceedings of the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. Vol. 2. San Francisco, California, USA, 2015, V002T06A008. https://doi.org/10.1115/ipack2015-48055
Jiawei Ge, Dayuan Jin, Zhiwei Qian. Research on heat dissipation technology of the high-power array antenna. Proceedings of the Seventh Asia International Symposium on Mechatronics, LNEE, vol. 589. Springer, Singapore, 2020, рp. 400–412, https://doi.org/10.1007/978-981-32-9441-7_41
Bekishev A. T., Smolyakov A. A., Isakov M. V. et al. [A new approach to cool multichannel SRM in APAR]. Vozdushno-kosmicheskaya sfera, 2018, no. 1(94), pp. 65–69, https://doi.org/10.30981/2587-7992-2018-94-1-64-69 (Rus)
Vasiliev A. G., Kolkovsky Yu. V., Minnebaev V. M. et al. [Solid-state gallium nitride 500-watt pulsed X-band power amplifier]. Elektronnaya tekhnika. Seriya 2. Poluprovodnikovyye pribory, 2011, iss. 1 (226), pp. 83–88. Available at: http://j.pulsarnpp.ru/images/journal/issues/2011/226_2011/Vasilev_83_88.pdf (Rus)
Nenartovitch N. E., Mitiachev M. V. [From practice of active phased antenna arrays development], Vestnik MGTU MIREA, 2014, no. 3, iss. 4, pp. 173-188, https://rtj.mirea.ru/upload/medialibrary/333/13-nenartovich.pdf (Rus).
Trofimov V. Ye., Pavlov A. L. [Intensification of heat transfer in liquid heat exchanger with dimpie-pin finning], Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2016, no. 1, pp. 23–26, https://doi.org/10.15222/TKEA2016.1.23 (Rus)
Trofimov V. Е., Pavlov A. L., Mokrousova E. A. [CFD-simulation of radiator for air cooling of microprocessors in a limitided space]. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2016, no. 6, pp. 30–35, https://doi.org/10.15222/TKEA2016.6.30 (Rus)
Trofimov V. Е., Pavlov A. L., Storozhuk A. S. [CFD- simulation of impact jet radiator for thermal testing of microprocessors]. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature. 2018, no. 5–6, pp. 30–36. https://doi.org/10.15222/TKEA2018.5-6.30 (Rus)
Nikolaenko Yu. E., Baranyuk A. V., Reva S. A. et al. Numerical simulation of the thermal and hydraulic characteristics of the liquid heat exchanger of the APAA transmitter-receiver module. Thermal Science and Engineering Progress, 2020, vol. 17, art. no. 100499, 11 p. https://doi.org/10.1016/j.tsep.2020.100499

Авторське право (c) 2020 Ніколаєнко Ю. Є., Баранюк О. В., Рева С. А.

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.