Вплив радіаційних дефектів на електрофізичні та детекторні властивості CdTe:Cl, опроміненого нейтронами

  • Олександр Кондрик ННЦ «ХФТІ» НАН України, Харків, Україна https://orcid.org/0000-0001-9428-4830
  • Генадій Ковтун ННЦ «ХФТІ» НАН України, Харківський національний університет імені В. Н. Каразіна, Харків, Україна https://orcid.org/0000-0003-4242-7697
Ключові слова: CdTe:Cl, детектори, моделювання, опромінення нейтронами, дефекти, глибокі рівні, збір зарядів

Анотація

Перспективним матеріалом для напівпровідникових детекторів іонізуючих випромінювань є CdTe:Cl, який дозволяє одержувати детектори з великими питомим опором ρ та електронною рухливістю μn. В процесі експлуатації детекторні матеріали можуть піддаватися впливу нейтронного опромінення, в результаті чого в кристалічній решітці виникають радіаційні дефекти, а в забороненій зоні з’являються глибокі рівні, які діють як центри захоплення та рекомбінації нерівноважних носіїв заряду, знижуючи реєстраційну здатність детектора.
Метою даної роботи було дослідження методом комп’ютерного моделювання механізмів впливу радіаційних дефектів, що виникають під дією нейтронного опромінення, на електрофізичні властивості (ρ, μn) CdTe:Cl та ефективність збору зарядів η детекторів випромінювань на основі цього матеріалу.
Моделювання проводилось на основі апробованих на достовірність моделей. Було встановлено, що підвищення питомого опору ρ CdTe:Cl при його бомбардуванні низькоенергетичними нейтронами і на початкових стадіях бомбардування високоенергетичними нейтронами викликано збільшенням концентрації радіаційних донорних дефектів Z (з рівнем енергії EС – 0.47 еВ), ймовірно міжвузельного телуру, який зміщує рівень Фермі в середину забороненої зони. Різкий стрибок ρ, який спостерігається при бомбардуванні високоенергетичними нейтронами, ймовірно викликаний перебудовою кристалічної структури детекторного матеріалу зі зміною постійної решітки та збільшенням ширини забороненої зони, що супроводжуються зміною властивостей провідності. Деградація детекторних властивостей CdTe:Cl при опроміненні нейтронами відбувається внаслідок захоплення і рекомбінації нерівноважних електронів на радіаційних дефектах: на міжвузельному Te, на телурі на місці кадмію, на вакансіях телуру та вакансіях кадмію. Деградація електронної рухливості може бути викликана розсіюванням електронів на мікроскопічних областях скупчень радіаційних дефектів. При рівномірному розподілі дефектів по об’єму кристала підвищення їхньої концентрації аж до 1016 см–3 істотно не впливає на електронну рухливість за кімнатної температури.

Посилання

Knoll G. F. Radiation detection and measurement. John Wiley & Sons, Inc., 2010, 829 p.

Csaba Szeles. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications. Physica Status Solidi (b), 2004, vol. 241, iss. 3, pp. 783-790. http://dx.doi.org/10.1002/pssb.200304296

Jambi L.K., Lees J.E., Bugby S. et al. Evaluation of XRI-UNO CdTe detector for nuclear medical imaging. Journal of Instrumentation, 2015, no. 10, P06012. http://dx.doi.org/10.1088/1748-0221/10/06/P06012

Samira Abbaspour, Babak Mahmoudian, Jalil Pirayesh Islamian. Cadmium telluride semiconductor detector for improved spatial and energy resolution radioisotopic imaging. World J. Nucl. Medicine, 2017, no. 16 (2), pp. 101-107. http://dx.doi.org/10.4103/1450-1147.203079

Fraboni B., Cavallini A., Auricchio N., Bianconi M. Deep traps induced by 700 keV protons in CdTe and CdZnTe detectors. IEEE Transactions on Nuclear Science, 2007, vol. 54, iss. 4, pp. 828-833. http://dx.doi.org/10.1109/TNS.2007.902364

Lamb D. A., Underwood C. I., Barriozet V. al. Proton irradiation of CdTe thin film photovoltaics deposited on cerium-doped space glass. Progress in Photovoltaics, 2017, vol. 25, iss. 12, pp. 10059-1067. http://dx.doi.org/10.1002/pip.2923

Xianf Chen, He-tong Han, Gang Li, Yi Lu. Accumulative dose response of CdZnTe detectors to 14.1 MeV neutrons. Nucl. Instrum. and Meth. in Phys. Res. Sec. B, 2017, vol. 394, pp. 97-102. http://dx.doi.org/10.1016/j.nimb.2017.01.001

Plyatsko S. V., Rashkovetskiy L. V. [Deep centers of radiation defects in CdZnTe single crystals created by a fast neutron flux]. Semiconductors/Physics of the Solid State, 2018, vol. 52, iss. 3, pp. 322-326. http://dx.doi.org/10.21883/FTP.2018.03.45615.8373 (Rus)

Miyamaru H., Fujii K., Iida T., Takahashi A. Effect of fast neutron irradiation on CdTe radiation detectors. Journal of Nuclear Science and Technology, 1997, vol. 34, no. 8, pp. 755-759. http://dx.doi.org/10.1080/18811248.1997.9733739

Cavallini A., Fraboni B. Defective states induced in CdTe and CdZnTe detectors by high and low energy neutron irradiation. Journal of Applied Physics, 2003, vol. 94, no. 5, pp. 3135-3142. http://dx.doi.org/10.1063/1.1600529

Loginov Yu. Yu., Mozzherin A. V., Paklin N. N. Modeling structural defect formation in cadmium telluride during electron irradiation. 21st Int. Scientific Conference Reshetnev Readings-2017. IOP Conf. Series: Materials Science and Engineering, 2019, vol. 467, pp. 012007. http://dx.doi.org/10.1088/1757-899X/467/1/012007

Kondrik A. I. Detector properties of Cd0.9Z0.1Te:Al under the influence of low doze gamma irradiation. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2016, no. 1, pp. 12-19. http://dx.doi.org/10.15222/TKEA2016.1.12 (Rus)

Karunathan R., Mohanraj K., Chandrasekaran J., Babu B. Effect of gamma irradiation on structural properties of CdTe thin films. Chemical Letters, 2018, vol. 1, iss. 1, pp. 19-22. http://dx.doi.org/10.26524/cl1814

Kumar S., Kumar M. V., Pattabi M. et al. Effect of gamma irradiation on electrical properties of CdTe/CdS solar cells. Materials Today: Proceedings, 2018, vol. 5, iss. 10, part 3, pp. 22570-22575. http://dx.doi.org/10.1016/j.matpr.2018.06.630

Fraboni B., Pasquini L., Castaldini A. et al. X-ray irradiation effects on the trapping properties of Cd1-xZnxTe detectors. J. Appl. Phys. 2009, vol. 106, pp. 093713. http://dx.doi.org/10.1063/1.3253748

Dreier Erik Schou, Kehres Jan, Khalil Mohamad et al. Spectral correction algorithm for multispectral CdTe X-ray detectors. Optical Engineering, 2018, vol. 57, no. 5, pp. 054117-1- 054117-13. http://dx.doi.org/10.1117/1.OE.57.5.054117

Miyamaru H., Iida T., Takahashi A. Improvement of radiation response characteristic on CdTe detectors using fast neutron irradiation. Journal of Nuclear Science and Technology, 1999, vol. 36, iss. 1, pp. 54-60. http://dx.doi.org/10.1080/18811248.1999.9726181

Kondrik A. I., Kovtun G. P. Influence of impurities and structural defects on electrophysical and detector properties of CdTe and CdZnTe. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, no. 5-6, pp. 43-50. http://dx.doi.org/10.15222/TKEA2019.5-6.43 (Rus)

Hofmann D. M., Stadler W., Christmann P., Meyer B. K. Defects in CdTe and Cd1-xZnxTe. Nucl. Instrum. Methods Phys. Res. A, 1996, vol. 380, iss. 1-2, pp. 117-120. http://dx.doi.org/10.10.1016/S0168-9002(96)00287-2

Fraboni B., Cavallini A., Dusi W. Damage induced by ionizing radiation on CdZnTe and CdTe detectors. Nuclear Science, IEEE Transactions, 2004, vol. 51, iss. 3, pp. 1209-1215. http://dx.doi.org/10.1109/TNS.2004.829445

Ruihua Nan, Tao Wang, Gang Xu et al. Compensation processes in high-resistivity Cd1-xZnxTe crystals doped with In/Al. Journal of Crystal Growth, 2016, vol. 451, pp. 150-154. http://dx.doi.org/10.1088/1674-4926/30/8/082002

Nan Rui-hua1, Jie Wan-qi1, Zha Gang-qiang et al. Determination of trap levels in CZT:In by thermally stimulated current spectroscopy. Transactions of Nonferrous Metals Society of China, 2012, vol. 22, pp. s148-s152. http://dx.doi.org/10.1016/S1003-6326(12)61700-2

Опубліковано
2020-04-28