Кинетика деформации ВАХ оксидных варисторных структур, обусловленная перезарядкой локализованных состояний

  • A. C. Тонкошкур Днепропетровский национальный университет имени Олеся Гончара, Украина
  • A. B. Иванченко Днепропетровский национальный университет имени Олеся Гончара, Украина
Ключові слова: вольт-амперная характеристика, поверхностные электронные состояния, варистор, деградация, поляризация, деполяризация, уход напряжения, релаксация, межкристаллитный барьер

Анотація

Проведено моделирование деформации импульсных вольт-амперных характеристик (ВАХ) отдельного межкристаллитного потенциального барьера при переходных процессах поляризации/деполяризации, связанной с перезарядкой поверхностных электронных состояний, которые обусловливают этот барьер. Установлено, что в зависимости от концентрации и степени заполнения этих поверхностных состояний электронами воздействие постоянного напряжения может привести к смещению импульсных ВАХ в область больших или же малых токов. Показана возможность применения найденных закономерностей для керамических варисторных структур. Предложенная модель позволяет интерпретировать наблюдаемые при испытаниях варисторов на ускоренное старение «аномальные» эффекты, такие как возрастание классификационного напряжения и уменьшение мощности активных потерь.

Посилання

Chiang Y. M., Kingery W. D., Levinson L. M. Compositional changes adjacent to grain boundaries during electrical degradation of a ZnO varistor. Journal of Applied Physics, 1982, Vol. 55, iss. 3, pp. 1765-1768. https://doi.org/10.1063/1.331647

Gupta T. K., Carlson W. G. A grain-boundary defect model for instability/stability of a ZnO varistor. Journal of Materials Science, 1985, vol. 20, iss. 10, pp. 3487-3500. https://doi.org/10.1007/BF01113755

Makarov V. O., Tonkoshkur A. S., Chernenko I. M. [Influence of thermal vacuum processing on the electrical properties of zinc oxide varistors]. Elektronnaya tekhnika. Seriya 5. Radiodetali i radiokomponenty, 1988, iss. 1(70), pp. 18-20. (Rus)

Kostić P., Milosević O., Uskoković D., Ristić M. M. Potential barrier degradation at the grain boundary of ZnObased nonlinear resistors. Physica B+C, 1988, vol. 150, iss. 1-2, pp. 175-178. https://doi.org/10.1016/0378-4363(88)90120-9

Avdeenko B. K., Tonkoshkur A. S., Chernenko I. M., Ivon A. I., Shchelokov A. I. [Temperature coefficient of resistance of highly nonlinear zinc oxide resistors]. Elektronnaya tekhnika. Seriya 5. Radiodetali i radiokomponenty, I980, iss. 4(41), pp. 17-19. (Rus)

Iga A. Drift phenomena of capacitance and current in nonohmic ZnO ceramics. Japanese Journal of Applied Physics, 1980, vol. 19, no 1, pp. 201-202. https://doi.org/10.1143/JJAP.19.201

Sato K., Takada Y. A mechanism of degradation in leakage currents through ZnO varistors. Journal of Applied Physics, 1982, vol. 53, iss. 12, pp. 8819-8826. https://doi.org/10.1063/1.330433

Ivanchenko A. V., Tonkoshkur A. S. Modeling of the degradation electromigrational processes in structures with intercrystallite potential barriers. Multidiscipline Modeling in Materials and Structures, 2007, vol. 3, iss. 4, pp. 477-490. https://doi.org/10.1163/157361107782106375

Ivanchenko A. V., Tonkoshkur A. S. Electromigration degradation model of metal oxide varistor structures. Ukrainian Journal of Physics, 2012, vol. 57, no 3, pp. 330-338.

Ivanchenko A. V., Tonkoshkur A. S., Makarov V. O. Desorption thermal degradation model of zinc oxide ceramics. Journal of the Europen Ceramic Society, 2004, vol. 24, iss. 15-16, pp. 3709-3712. https://doi.org/10.1016/j.jeurceramsoc.2003.12.004

Gansali Sh. M., Gashimov A. M. [Influence of degradation process on the electrophysical characteristics of varistors]. Problemy energetiki, 2005, no 2, pp. 67-69. (Rus)

Dmitriev V. L., Krasavina M. A. [The «aging» of varistors during exploitation process surge arresters]. Novosti elektrotekhniki, 2010, no 1, pp. 1-8. (Rus)

Philipp H. R., Levinson L. M. Long-time polarization currents in metal-oxide varistors. Journal of Applied Physics, 1976, vol. 47, iss. 7, pp. 3177-3181. https://doi.org/10.1063/1.323113

Tonkoshkur A. S., Gomilko I. V., Lyashkov A. Yu. Isothermal depolarization in zinc oxide varistor ceramics. Inorganic Materials, 1998, vol. 34, no 9, pp. 939-943.

Tsonos C., Kanapitsas A., Triantis D., Anastasiadis C., Stavrakas I., Pissis P. Low temperature dielectric relaxations in ZnO varistor. Japanese Journal of Applied Physics, 2010, vol. 49, iss. 1, pp. 051102-051102-5. https://doi.org/10.1143/JJAP.49.051102

Gupta T. K. Application of zinc oxide varistors. Journal of the American Ceramic Society, 1990, vol. 73, iss. 7, pp. 1817-1840. https://doi.org/10.1111/j.1151-2916.1990.tb05232.x

Tonkoshkur Yu. A., Glot A. B. Isothermal depolarization current spectroscopy of localized states in metal oxide varistors. Journal of Physics D: Applied Physics, 2012, vol. 45, no 46, pp. 465305–465305-8. https://doi.org/10.1088/0022-3727/45/46/465305

Khandetsky V. S., Tonkoshkur Yu. A. Investigation of recharging processes for the volume localized states in polycrystalline semiconductors. Visnyk Dnipropetrovskogo universytetu. Fizyka. Radioelectronika, 2013, vol. 21, no 2, iss. 20, pp. 104-110.

Tonkoshkur A. S., Klimenko V. I., Gomilko I. V. [Features of thermodepolarization effects in zinc oxide ceramics for varistors]. Zhurnal tekhnicheskoi fiziki, 1997, vol. 67, no 10, pp. 60-63. (Rus)

Sze S. M. Physics of semiconductor devices. 2nd ed., New York, John Wiley&Sons, 1981, 880 p.

Tonkoshkur A. S. [Current-voltage characteristic of zinc oxide varistor]. Elektronnaya tekhnika. Seriya 5. Radiodetali i radiokomponenty, 1991, iss. 2(83), pp. 15-19. (Rus)

Einzinger R. Development of physical models of varistors on the basis of ZnO. In book: Polycrystalline Semiconductors: Physical Properties and Applications, ed. G. Harbeke, Berlin—Heidelberg—New York—Tokyo, Springer-Verlag, 1985, pp. 228-240.

Vashpanov Yu. A., Smyntyna V. A. Adsorbtsionnaya chuvstvitel'nost' poluprovodnikov [Adsorption sensitivity of semiconductors]. Odessa, Astroprint, 2005, 216 p.

IEC/EN 60099-4, August 2004: Surge arresters – Part 4: Metal-oxide surge arresters without gaps for a. c. systems.

Clarke D. R. Varistor ceramics, Journal of the American Ceramic Society, 1999, vol. 82, iss. 3, pp. 485-502. https://doi.org/10.1111/j.1151-2916.1999.tb01793.x

Ivon A. I. Parameters of ZnO grains in ZnO-based ceramics. Inorganic materials, 2000, vol. 36, no 10, pp. 1074-1077.

He J., Zeng R., Chen Q., Chen S., Guan Z., Han S. W., Cho H. G. Nonuniformity of electrical characteristics in microstructures of ZnO surge varistors. Power Delivery, IEEE Transactions on, 2004, vol. 19, iss. 1, pp. 138-144. https://doi.org/10.1109/TPWRD.2003.820214

Tonkoshkur O. S., Ignatkin V. U. Fizichni osnovi elektrichnogo kontrolyu neodnoridnikh sistem [Physical fundamentals of electrical control of heterogeneous systems]. Dneprodzerzhinsk, DDTU, 2010. 290 p.

Kisilev V. F., Kozlov S. N., Zoteev A. V. Osnovy fiziki poverkhnosti tverdogo tela [Fundamentals of physics of solid body surface]. Moscow, Izdatelstvo MGU. Fizichesky fakultet, 1999, 284 p.

Kvaskov V.B. Poluprovodnikovye pribory s bipolyarnoi provodimost'yu [Semiconductor devices with bipolar conductivity]. Moscow, Energoatomizdat, 1988, 128 p.

Опубліковано
2014-12-24
Як цитувати
ТонкошкурA. C., & ИванченкоA. B. (2014). Кинетика деформации ВАХ оксидных варисторных структур, обусловленная перезарядкой локализованных состояний. Технологія та конструювання в електронній апаратурі, (5–6), 15-23. https://doi.org/10.15222/TKEA2014.2.15