Sharp interfaces in p+-AlGaAs/n-GaAs epitaxial structures obtained by MOCVD

  • N. M. Vakiv Scientific Research Company «Electron-Carat», Lviv, Ukraine
  • S. I. Krukovskii Scientific Research Company «Electron-Carat», Lviv, Ukraine
  • S. Yu. Larkin Scientific-production concern "Nauka", Kyiv, Ukraine
  • A. Yu. Avksent'ev Scientific-production concern "Nauka", Kyiv, Ukraine
  • R. S. Krukovskii Scientific-production concern "Nauka", Kyiv, Ukraine
Keywords: epitaxial layer, gallium arsenide, MOCVD, heteroboundary, rare-earth element, doping

Abstract

The complexity of forming sharp and high-quality boundaries in p+AlGaAs/n-GaAs systems by MOCVD method is caused by differing on 80–120°С optimal crystallization temperature of GaAs layers and n-AlGaAs solid solutions. A method of forming qualitative hetero boundaries under conditions of continuous growth at changing crystallization temperature from 600–700°C has been developed. It has been determined that the crystallization of p+-AlGaAs: Zn solid solution layer on the surface of n-GaAs:Si layer, with increasing the crystallization temperature in the temperature range of 600–760°C at a rate 8–10 °C/min allows to crystallize sharp impurity boundary between the layers of p- and n-type conductivity. The method of forming sharp hetero boundaries in p-GaAs:Zn/n-GaAs:Si systems can be used for manufacturing wide range of epitaxial structures.

References

Petrova-Koch V., Hezel R., Gotszberger A.. Highefficient low cost photovoltaics. Springer, 2009.

Dong J. R., Teng J. H., Chua S. J. et al. MOCVD growth of 980 nm InGaAs/GaAs/AlGaAs graded index separate confinement heterostructure quantum well lasers with tertiarybutylarsine. Journal of Crystal Growth, 2006, vol. 289, iss. 1, pp. 59-62. https://doi.org/10.1016/j.jcrysgro.2005.10.138

Shastry S. K., Zemon S., Kenneson D. G., Lambert G. Control of residual imprities in very high purity GaAs grown by organometallic vapor phase epitaxy. Appl. Phys.Lett., 1988, vol. 52, iss. 2, p. 150. https://doi.org/10.1063/1.99034

Fuek Sh., Umemura M., Yamada N. et al. Morfology of GaAs homoepitaxial layer grown on (111)A substrate planes by organometalllic vapor phase deposition. Journal of Applied Physics, 1990, vol. 68, iss. 1, pp. 97-100. https://doi.org/10.1063/1.347076

Umemura M., Kuwahara K., Fuke Sh. et al. Morphology of AlGaAs layer grown on GaAs(111)A substrate plane by organometallic vapor phase epitaxy. J. Appl. Phys., 1992, vol. 72, iss. 1, p. 313. https://doi.org/10.1063/1.352141

Hanna M. C., Lu Z. H., Majerfeld A. Very high carbon incorporation in metalorganic vapor phase epitaxy of heavily doped p-type GaAs. Appl. Phys.Lett., 1991, vol. 58, iss. 2, p. 164. https://doi.org/10.1063/1.104960

Watanabe N., Ito H. Saturation of hole concentration in carbon-doped GaAs grown by metalorganic chemical vapour deposition. J. C. Cryst. Growth, 1997, vol. 182, no 1-2, pp. 30-36. https://doi.org/10.1016/S0022-0248(97)00333-3

Hanna M. C., Lu Z. H., Oh E. G., Mao E., Majerfeld A. Atmospheric pressure organometallic vapor phase epitaxy growth of high-mobility GaAs using trimethylgallium and arsine. Appl. Phys.Lett., 1990, vol. 57, iss. 11, p. 1120. https://doi.org/10.1063/1.103509

Marmalyuk А. А. [Regularities of formation of three-component solid solutions under conditions of MOC-hydride epitaxy] Materialy Elektronnoi Tekhniki, 2005, no 1, pp. 17-23.

Marmalyuk А. А. [Doping of Ga-As under MOCVD conditions] Materialy Elektronnoi Tekhniki, 2004, no 3, pp 14-18.

Published
2014-06-23
How to Cite
Vakiv, N. M., Krukovskii, S. I., Larkin, S. Y., Avksent’ev, A. Y., & Krukovskii, R. S. (2014). Sharp interfaces in p+-AlGaAs/n-GaAs epitaxial structures obtained by MOCVD. Technology and Design in Electronic Equipment, (2–3), 61-66. https://doi.org/10.15222/TKEA2014.2.61