Carbon nanowalls in field emission cathodes

  • A. F. Belyanin Central Research Technological Institute “Technomash”, Moscow, Russia
  • V. V. Borisov Skobeltsyn Institute of Nuclear Physics, Moscow, Russia
  • S. A. Daghetsyan Lomonosov Moscow State University, Moscow, Russia
  • S. A. Evlashin НИИ ядерной физики им. Д. В. Скобельцына, Москва, РоссияSkobeltsyn Institute of Nuclear Physics, Moscow, Russia
  • A. A. Pilevsky Skobeltsyn Institute of Nuclear Physics, Moscow, Russia
  • V. A. Samorodov Skobeltsyn Institute of Nuclear Physics, Moscow, Russia
Keywords: carbon nanowalls, layered structures, electron microscopy, Raman spectroscopy, field emission cathodes

Abstract

The carbon nanowall (CNW) layers were grown from a gas mixture of hydrogen and methane, activated by a DC glow discharge, on Si substrates (Si/CNW layered structure). The second layer of CNW was grown either on the first layer (Si/CNW/CNW structure) or on Ni or NiO films deposited on the first CNW layer (Si/CNW/Ni/CNW and Si/CNW/NiO/CNW structures). The composition and structure of the resulting layered structures were studied using scanning electron microscopy, Raman spectroscopy, and X-ray diffractometry. It was found that annealing of Si/CNW structure in vacuum, growing of the second CNW layer on Si/CNW, as well as deposition of Ni or NiO films prior to the growing of the second CNW layer improve functional properties of field emission cathodes based on the electron-emitting CNW layers.

References

Tzeng Y., Chen C-L., Chen Y-Y., Liu C-Y. Carbon nanowalls on graphite for cold cathode applications. Diamond and Related Materials, 2010, vol. 19 (2-3), pр. 201-204.

Wang H-X., Jiang N., Zhang H., Hiraki A. Growth of a three dimensional complex carbon nanoneedle electron emitter for fabrication of field emission devices. Carbon, 2010, vol. 48, рр. 4483-4488. https://doi.org/10.1016/j.diamond.2009.08.005

Belyаnin A.F., Borisov V.V., Bagdasarian A.S. Rossiiskii tekhnologicheskii zhurnal, 2017, vol. 5, no. 3,

pp. 22-40. (Rus)

Egorov N., Sheshin E. Field emission electronics. Springer Series in Advanced Microelectronics, 2017, vol. 60, pp. 568, http://dx.doi.org/10.1007/978-3-319-56561-3

Busta H.H., Chen J.M., Shen Z., Jansen K., Rizkowski S., Matey J., Lanzillotto A. Characterization of electron emitters for miniature X-ray sources. Journal of Vacuum Science & Technology B, 2003, vol. 21, pp. 344—349. https://doi.org/10.1007/978-3-319-56561-3

Belyanin A.F., Borisov V.V., Samoylovich M.I., Bagdasarian A.S. On the effect of laser irradiation and heat treatment on the structure and field-emission properties of carbon nanowalls. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2017, vol. 11, no. 2, pp. 295-304. http://dx.doi.org/10.1134/S1027451017020057]

Belyanin A.F., Borisov V.V., Nalimov S.A., Bagdasarian A.S. Nanomaterials and nanostructures - XXI century, 2017, vol. 8, no. 3, pp. 34—42. (Rus)

Belyanin A.F., Samoylovich M.I., Borisov V.V., Evlashin S.A. [Study of multiphase carbon films of field

emission cathodes electron microscopy, raman spectroscopy and X-ray diffraction method]. Nano- and Microsystems Technology, 2014, no. 2, pp. 20-25. (Rus)

Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nanodiabatic effects. Solid State Communications, 2007, vol. 143, pp. 47-57. https://doi.org/10.1016/j.ssc.2007.03.052

Pimenta M.A., Dresselhaus G., Dresselhaus M.S., Cancado L.G., Jorio A., Saito R. Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical Physics, 2007, vol. 9, pp. 1276-1291. http://dx.doi.org/10.1039/B613962K

Ferrari A.C., Meyer J.C., Scardaci V., Casiraghi C., Lazzeri M., Mauri F., Piscanec S., Jiang D., Novoselov K.S., Roth S., Geim A.K. Raman spectrum of graphene and graphene layers. Physical Review Letters, 2006, vol. 97, 187401. https://doi.org/10.1103/PhysRevLett.97.187401

Shang N.G., Staedler T., Jiang X. Radial textured carbon nano flake spherules. Applied Physics Letters, 2006, 89, 103112. https://doi.org/10.1063/1.2346314

Jackson Di Martino Thornton. Carbon Nanowalls: Processing, Structure and Electrochemical Properties. A dissertation submitted to the Graduate Faculty of North Carolina State University, 2011, 55 p.

Tzeng Y, Chen W. L, Wu C., Lo J-Y., Li C-Y. The synthesis of graphene nanowalls on a diamond film on a silicon substrate by direct-current plasma chemical vapor deposition. Carbon, 2013, vol. 53, pp. 120-129. https://doi.org/10.1016/j.carbon.2012.10.038

Eletskii A. V. Carbon nanotube-based electron field emitters. 2010 Phys.-Usp. 53 863. https://doi.org/10.3367/UFNe.0180.201009a.0897

Borisov V.V., Pilevskii A.A., Samorodov V.A. Nanomaterials and nanostructures - XXI century, 2017,

vol. 8, no. 2, pp. 37-41. (Rus)

Smol’nikova E.A. Investigation of the structural and autoemission characteristics of nanografic cold cathodes. A dissertation submitted to the Graduate, 2015, Lomonosov Moscow State University, 146 p. (Rus)

Published
2017-12-26
How to Cite
Belyanin, A. F., Borisov, V. V., Daghetsyan, S. A., Evlashin, S. A., Pilevsky, A. A., & Samorodov, V. A. (2017). Carbon nanowalls in field emission cathodes. Technology and Design in Electronic Equipment, (6), 34-43. https://doi.org/10.15222/TKEA2017.6.34