Constructive and technological aspects of the heat flow imitator based on diamond-like films

Keywords: heat flow imitator, diamond-like film, heating element temperature, heat pipe

Abstract

The paper describes features of the design and manufacturing technology of a volumetric detachable heat flow imitator designed for the study of thermal characteristics and for carrying out thermal tests of heat pipes of cooling systems for electronic equipment. The authors use thin alumina ceramic plates with deposited with diamond-like films as heating elements of the imitator. Experimental results are presented on the surface temperature of heating elements and the temperature drop between the heating elements and the heat pipe in the region of the input heat flux values from 5 to 25 W. The use of the proposed heat flow imitator allows speeding up the process of research and testing of heat pipes.

References

Khayrnasov S.M. [Application of heat pipes in the systems providing thermal conditions REA: current state and prospects]. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2015, no. 2-3, pp. 19-33. (Rus). https://doi.org/10.15222/TKEA2015.2-3.19

Baturkin V.M., Nikolaenko Yu.E., Galyautdinov D.M., Vladimirov I.T. [Effective cooling of powerful super highfrequency microelectronic unit]. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2007, no. 3, pp. 46-50. (Rus).

Masataka Mochizuki, Thang Nguyen, Koichi Mashiko, Yuji Saito, Tien Nguyen, Vijit Wuttijumnong. A review of heat pipe application including new opportunities, Frontiers in Heat Pipes (FHP), 2011, vol. 2, 013001. pp. 1-15. https://doi.org/10.5098 / fhp.v2.1.3001

Nikolaenko Yu.E., Bykov E.V., Lozovoy M.A., Khairnasov S.M., Khmelev Yu.A. [Ways to reduce the temperature of the crystal LED in the chandelier with aluminum heat pipes]. Proceedings of the XV International Scientific and Practical Conference «Modern Information and Electronic Technologies», Ukraine, Odessa, 2014, vol. 2, pp. 24-25. (Rus). http://ela.kpi.ua/handle/123456789/17475

Ivanovskii M.N., Sorokin V.P., Chulkov B.A., Yagodkin I.V. Tekhnologicheskie osnovy teplovykh trub [Technological bases of heat pipes]. Moscow, Atomizdat, 1980 (Rus).

Zhi Hu Xue, Wei Qu. Experimental and theoretical research on the ammonia pulsating heat pipe: the new full visualization of the flow pattern and the operating mechanism, International Journal of Heat and Mass Transfer, 2017, vol. 106, pp. 149-166. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.042

Alekseyik E.S., Kravets V.Yu. [Influence of the number of turns on the heat transfer characteristics of pulsating heat pipes]. East-European Journal of Advanced Technologies, series: Energy-saving technologies and equipment, 2010, iss. 6/7 (48), pp. 59-63. (Rus).

Asirvatham L.A., Wongwises S., Babu J. Heat transfer performance of a glass thermosyphon using graphene-acetone nanofluid. Journal of Heat Transfer, 2015, vol. 137, pp. 111502-1-111502-9. https://doi.org/10.1115 / 1.4030479

L. Vasiliev Jr., M. Rabetsky, A. Kulakov, L. Vasiliev, Z. M. Li. An An advanced miniature copper heat pipes. In: Proceedings of the VII Minsk International Seminar «Heat Pipes, Heat Pumps, Refrigerators, Power Sources», Minsk, Belarus, 2008, vol. 1, pp. 336-344. https://www.researchgate.net/publication/255790604_An_advanced_miniature_copper_heat_pipes_development_for_cooling_system_of_mobile_PC_platform

Khayrnasov SM, Rassamakin B.M. Alexeek E.S., Anisimova A.A. [Performance characteristics of aluminum thermosyphons for a combined solar collector]. Naukovi ivisti visti NTUU «KPI», 2014, no 6, pp. 42-48. (Ukr).

Hussam Jouhara, Anthony J. Robinson. Experimental investigation of the small diameter two-phase closed thermosyphons charged with water, FC-84, FC-77 and FC-3283. Applied Thermal Engineering, 2010, vol. 30, pp. 201-211. https://doi.org/10.1016 / j.applthermaleng.2009.08.007

Ji Li, Daming Wang, G. P. «Bud» Peterson. A compact loop heat pipe with flat square evaporator for high power chip cooling. IEEE Transactions on Components. Packaging and Manafacturing Tecnology, 2001, vol. 1, no. 4, pp. 519-527. https://doi.org/10.1109 / TCPMT.2010.2099531

Pat. 67527 A Ukraine. [Method of obtaining a resistive coating]. S. M. Rotner, V. E. Nikitin, 2004, byul no 6. (Ukr).

Pat. 5311 Russian Federation. [Heater]. А.В. Elagin, S.M. Rotner, V.V. Saltykov, 1997. (Rus). http://www1. fips.ru/fips_servl/fips_servlet?DB=RUPM&DocNumber=5311&TypeFile=html

Pat. 2772 Ukraine. [Heater]. С.М. Rotner, 2004, byul no 8. (Ukr).

Pat. 121573 Ukraine. [The simulator of the heat flow]. Yu.E. Nikolaenko, R.S. Melnik, O.I. Rudenko, S.M. Rotner, 2017, byul no 23. (Ukr). http://ela.kpi.ua/handle/123456789/21497

Nikolaenko Yu.E., Kozak D.V. [Thermal resistance of an aluminum gravitational heat pipe with a threaded capillary structure], Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2017, no. 4-5, pp. 24-31. (Rus). https://doi.org/10.15222/TKEA2017.4-5.24.

Published
2017-12-26
How to Cite
Nikolaenko, Y. E., Melnyk, R. S., Rudenko, A. I., & Rotner, S. M. (2017). Constructive and technological aspects of the heat flow imitator based on diamond-like films. Technology and Design in Electronic Equipment, (6), 29-33. https://doi.org/10.15222/TKEA2017.6.29