Structure and dielectric properties in the radio frequency range of polymer composites based on vanadium dioxide
Abstract
Polymer composites with active fillers are recently considered to be promising materials for the design of new functional devices with controllable properties and are intensively investigated. Dielectric studies are one of the most effective methods for studying structural features and mechanisms of conductivity formation for this type of two-component systems. The paper presents research results of the dielectric characteristics in the range of radio frequency of 50 kHz – 10 MHz and temperature range of 30 – 60°C of polyethylene composites of vanadium dioxide with different volume fractions of filler. Two dispersion areas were found: a high-frequency area caused by the Maxwell charge separation on the boundaries of the polyethylene matrix — conductive filler of VO2 crystallites, and a low frequency area associated with the presence of the transition layer at this boundary. The relative permittivity of the composite has a tendency to a decrease in absolute value with increasing temperature. The analysis of the low-frequency dependence of the dielectric constant of the value of the filler’s volume fraction revealed that the investigated composite belongs to two-component statistical mixtures with a transition layer between the components.
References
Godzhaev E.M., Magerramov A.M., Safarova S.I., Nuriev M.A., Ragimov R.S. Elektronnaya obrabotka materialov, 2008, no 6, pp. 66-70. (Rus)
Gasanli Sh.M., Imanova A.Y., Samedova U. F. Electrical properties of thin-film composites based on silicon and polypropylene. Semiconductors, vol. 45, iss. 8, pp. 1085-1088. http://dx.doi.org/10.1134/S1063782611080070
Lyashkov A.Yu., Tonkoshkur A.S. Varistor composites with a positive temperature coefficient of resistance. Technical Physics. vol. 56, iss. 3, pp. 427-428. http://dx.doi.org/10.1134/S1063784211030121
Kurbanov M.A., Suleymanov G.Z., Safarov N.A., Gochuyeva A.F., Orujov I.N., Mamedova Z.M. Conductivity photoquenching effect in polymer—ferrocene composites. Semiconductors, vol. 45, iss. 4, pp. 503-509. http://dx.doi.org/10.1134/S1063782611040130
Aneli J., Zaikov G., Mukbaniani O. Physical principles of the conductivity of electrical conducting polymer composites (review). Molecular Crystals and Liquid Crystals, 2012, vol. 554, iss. 1, рр . 167-187. http://dx.doi.org/10.1080/15421406.2012.633866
Antonova K.V., Kolbunov V.R., Tonkoshkur A.S. Structure and properties of polymer composites based on vanadium dioxide. Journal of Polymer Research, 2014, vol. 21, no 5, pp. 1-5. http://dx.doi.org/10.1007/s10965-014-0422-7
Wartenberg M. F., Lahlouh J. G., Toth J. Conductive polymer composition and device. Pat. USA, no. 9970130 US5747147, 1998.
Degtyar’ov A.V., Tonkoshkur A.S. Electric Conductivity of PTCR polyethylene — graphite composites. Ukrainian Journal of Physics, 2007, vol. 52, no 9, pp. 863 — 867.
Bànhegyi G. Numerical analysis of complex dielectric mixture formulae. Colloid & Polymer Science, 1988, vol. 266, no 1, pp. 11-28. http://dx.doi.org/10.1007/BF01451527
Soon-Gi Shin1, In-Kyu Kwon. Effect of temperature on the dielectric properties of carbon dlack-filled polyethylene matrix composites below the percolation threshold. Electronic Materials Letters, 2011, vol. 7, no 3, pp. 249-254. http://dx.doi.org/10.1007/s13391-011-0913-1
Degtyar`ov A.V., Tonkoshkur A.S., Lyashkov A.Yu. Electrical properties of posistor composite materials based on polyethylene-graphite. Multidiscipline Modeling in Materials and Structures. VSP, 2006, vol. 2, no 4, pp. 435-441.
Ivon A.I., Kolbunov V.R., Chernenko I.M. [Preparation of crystalline dioxide vanadium (IV) by reduction of vanadium oxide (V) with carbon] Voprosy khimii i khimicheskoi technologii, 2004, no 2, pp. 68-72. (Ukr)
Tonkoshkur O.S., Ignatkin V.U. Fizichni osnovi elektrichnogo kontrolyu neodnoridnikh sistem [Physical basis of electrical control heterogeneous systems]. Dniprodzerzhyns'k, DDTU, 2010, 290 p. (Rus)
Kolbunov V.R., Ivon A.I., Chernenko I.M. Conductivity of VO2-based ceramics. Journal of Materials Science: Materials in Electronics, 2006, vol. 17, no 1, pp. 57-62. http://dx.doi.org/10.1007/s10854-005-5142-7
Akhnazarova S.L., Kafarov V.V. Metody optimizatsii eksperimenta v khimicheskoi tekhnologii [Methods of optimization experiment in the chemical technology]. Moscow, Vysshaya shkola, 1985, 327 p. (Rus)
Shklovskii B. I., Efros A. L. Elektronnye svoistva legirovannykh poluprovodnikov [The electronic properties of doped semiconductors]. Moscow, Nauka. 1979, 416 p. (Rus)
Dukhin S.S., Shilov V.N. Dielektricheskie yavleniya i dvoinoi sloi v dispersnykh sistemakh i polielektrolitakh [Dielectric phenomena and double layer in dispersed systems and polyelectrolytes]. Kyiv, Naukova dumka, 1972, 226 p. (Rus)
Rassokha A.N., Cherkashina A.N., Khramova T.I. Integrated Technologies and Energy Conservation. 2011, no 2, pp. 124-128. (Rus)
Copyright (c) 2015 Kolbunov V.R., Tonkoshkur A.S., Antonova K.V.

This work is licensed under a Creative Commons Attribution 4.0 International License.