Acousto-optic properties of GexS100–x glasses and acousto-optic modulator on their basis
Abstract
The investigation of acousto-optic properties of GexS100–x glasses, which had shown that they are perspective lightsoundwire material for manufacturing of acousto-optic devices for controlling the laser radiation in the visible spectral region was performed. Taking into account the technological conditions for synthesis of glasses with optical quality, the two optimal compositions, Ge30S70 and Ge25S75, were proposed for fabrication of optical-acoustic modulator. These compositions possess the high optical perfection and transmission in the spectral range of 0.4 – 11 μm, the moderate optical absorption of 2 – 3 dB/cm, their acoustic quality factor ~100 times exceeds those of quartz. The construction and main parameters of the acousto-optic modulator based on Ge30S70 and Ge25S75 glasses as lightsoundwire material and the converter is a plate of lithium niobate single crystal were described. In Bragg diversion mode the modulator has the maximum bandwidth of the modulating frequencies — 10 MHz, the diffraction efficiency — 40%, the speed — near 80 nanoseconds. It is also important to note that the effective modulation is obtained with the low power (40 mW) controlled electrical signal, which facilitates a thermal mode of the modulator and allows working without the forced cooling of the modulation element.
References
Pinnow D. A. Guide lines for the selection of acoustooptic materials. IEEE J. of Quantum Electronics, 1970, vol. 6, no 4, pp. 223-228. https://doi.org/10.1109/JQE.1970.1076441
Uchida N., Niidzeki N. Acoustooptic deflection materials and techniques. Proceedings of the IEEE, 1973, vol. 61, no 8, pp. 1073-1092. https://doi.org/10.1109/PROC.1973.9212
Pat. 77305 UA. [Use of monocrystals of semiconductor solid gallium and indium selenide solution as material for optoacoustic modulators of laser radiation]. I. P. Studeniak, M. Krancec, V. I. Fedelesh. 2006, bul. 11.
Pat. 2476916 RU. [Acousto-optic modulator]. M.M. Mazur, V.E. Pozhar, A.A. Pavlyuk, V.I. Pustovoyt, L.I. Mazur, V.N. Shorin. 27.02.2013.
Polyakov Yu.V., Makovskaya Z.G., Dembovskii S.A., Deryugin I.A., Talalaev M.A. [Criteria for the selection of glassy chalcogenide materials for use in acousto-optic devices]. Izvestiya AN SSSR Neorganicheskie materialy, 1981, vol. 17, no 7, pp. 1166—1171. (Rus)
Lainе M., Seddon A. B. Chalcogenide glasses for acousto-optic devices. J. Non-Cryst. Solids, 1995, vol. 184, no 30-35, pp. 30-35. https://doi.org/10.1016/0022-3093(94)00687-3
Kulakova L. A., Melekh B. T., Bakharev V. I., Kudoyarova V. Kh. Synthesis and physical properties of Si(Ge)—Se—Te glasses. J. Non-Cryst. Solids, 2006, vol. 352, no 9-20, pp. 1555-1559. https://doi.org/10.1016/j.jnoncrysol.2006.01.030
Kulakova L.A., Melekh B. T., Grudinkin S.A., Danilov A.P. Ge—Te—Se- and Ge−—Te−Se—S-alloys as new materials for acousto-optic devices of the near-, mid-, and far-infrared spectral region. Semiconductors, 2013, vol. 47, iss. 10, pp. 1426-1431. https://doi.org/10.1134/S1063782613100199
Adrianova I.I., Aio L.G., Asnis L.N., Kislitskaya E.A., Kokorina V.F. Acousto-optical properties of glasses of systems As—Ge—Se and As—Ge—Se—Sb. Acoustic journal, 1976, vol. 22, no 3, pp. 449-451. (Rus)
Balakshii V.I., Parygin V.N., Chirkov L.E. Fizicheskie osnovy akustooptiki [Physical basis of acousto-optics]. Moskow, Radio i svyaz’, 1985, 280 p. (Rus)
Bletskan D. І. The fundamental optical absorption edge glass GexS1–x. Glass Physics and Chemistry, 1986, vol. 12, no 3, pp. 368-370.
Voigt B. Über Glasbildung und Eigenschaften von Chalkogenidsystemen. XVII. Zur Glaschemie des Germaniumdisulfides. Zeitschrift für anorganische und allgemeine Chemie, 1978, Bd 447, no 1, pp. 153-160. https://doi.org/10.1002/zaac.19784470117
Bletskan D. I. Kristallicheskie i stekloobraznye khal’kogenidy Si, Ge, Sn i splavy na ikh osnove [Crystalline and glassy chalcogenides of Si, Ge, Sn and alloys based on them: Monograph]. Uzhgorod, Zakarpattya, 2004, 292 p. (Rus)
Tyagai V. A., Rastrenenko N. O., Popov V. B., Bletskan D. І., Sіchka M. Yu. Ellipsometry glassy chalcogenides germanium variable chemical composition. Ukr. J. Phys., 1976, vol. 21, no 8, pp. 1265-1269. (in Ukranian)
Bogdanov S.V. Akustoopticheskie metody izmereniya skorosti zvuka. [Acousto-optic methods for measuring the speed of sound] Novosibirsk, Publishing House SB RAS, 2013, 142 p. (Rus)
Dixon R. W., Cohen M. G. A new technique for measuring magnitudes of photoelastic tensors and its application to lithium niobate. Applied Physics Letters, 1966, vol. 8, no 8, pp. 205-207. https://doi.org/10.1063/1.1754556
Zusman M.I., Maneshin N.K., Parygin V.N. [Modulation of 10 μm radiation using ultrasonics]. Vestnik Moskovskogo universiteta. Seriya 3. Fizika-Astronomiya, 1972, vol. 13, no 2, pp. 190-194. (Rus)
Smith T.M., Korpel A. Measurement of light-sound interaction efficiencies in solid. IEEE J. of Quantum Electronics (Correspondence), 1965, vol. QE-1, no 6, pp. 283-284. https://doi.org/10.1109/JQE.1965.1072224
Gordon E.I. A review of acoustooptical deflection and modulation devices. Applied Optics., 1966, vol. 5, no 10, pp. 1629-1639. https://doi.org/10.1364/AO.5.001629
Korpel A. Acousto-optics — a review of fundamentals. Proceedings of the IEEE, 1981, vol. 69, no 1, pp. 48-53. https://doi.org/10.1109/PROC.1981.11919
Yang E.H., Shikay YAO. Design considerations for acousto-optic devices. Proceedings of the IEEE, 1981, vol. 69, no 1, pp. 54-64. https://doi.org/10.1109/PROC.1981.11920
Klein W.R., Cook B.D. Unified approach to ultrasonic light diffraction. Sonics and Ultrasonics, IEEE Transactions on, 1967, vol. 14, no 3, pp. 123-134. https://doi.org/10.1109/TSU.1967.29423
Magdich L.N., Molchanov V.Y. Akustoopticheskie ustroistva i ikh primenenie [Acousto-optical devices and their application]. Мoskow, Sovetskoe radio, 1978, 112 p. (Rus)
Copyright (c) 2014 Bletskan D. I., Vakulchak V. V., Fedelesh V. I.

This work is licensed under a Creative Commons Attribution 4.0 International License.