Deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications
Abstract
The authors investigate deformation-induced changes in the electrophysical parameters of the indium antimonide microcrystals at cryogenic temperatures in strong magnetic fields up to 10 T. It is determined that for strongly doped InSb microcrystals, the gauge factor at liquid-helium temperature is GF4.2K ≈ 72 for the charge carrier concentration of 2·1017 сm–3, while being GF4.2K ≈ 47 for the concentration of 6·1017 сm–3, at ε = –3·10–4 rel. un. For the development of magnetic field sensors based on the magnetoresistive principle, the effect of a giant magnetic resistivity reaching 720% at a temperature of 4.2 K is used.
References
Zutic I., Fabian Ja., Das Sarma S. Spintronics: Fundamentals and applications. Rev. Mod. Phys., 2004, vol. 76, iss. 2, 323. https://doi.org/10.1103/RevModPhys.76.323
Holota V.I., Kogut I., Druzhinin A., Khoverko Y. High sensitive active MOS photodetector on the local 3D SOI-structure. Advanced Materials Research, 2014, vol. 854, pp. 45–47. https://doi.org/10.4028/www.scientific.net/AMR.854.45
Druzhinin A., Ostrovskii I., Khoverko Yu., LiakhKaguy N. Negative magnetoresistance in indium antimonide whiskers doped with tin. Low Temperature Physics, 2016, vol. 42, pp. 453–457. https://doi.org/10.1063/1.4954778
Nepijko S.A., Kutnyakhov D., Odnodvorets L.V., Protsenko S.I. Sensor and microelectronic elements based on nanoscale granular systems. J. Nanopart. Res., 2011, vol. 13, iss. 12, p. 6263–6281. https://doi.org/10.1007/s11051-011-0560-3
Mangin S., Ravelosona D., Katine J.A. et al. Currentinduced magnetization reversal in nanopillars with perpendicular anisotropy. Nat. Mater., 2006, no. 5, pp. 210–215. https://doi.org/10.1038/nmat1595
Berger L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B, 1996, vol. 54, iss. 13, 9353. https://doi.org/10.1103/PhysRevB.54.9353
Slonczewski J.C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater., 1996, vol. 159, iss. 1–2, L1–L7. https://doi.org/10.1016/0304-8853(96)00062-5
Waintal X., Myers E.B., Brouwer P.W., Ralph D.C. Role of spin-dependent interface scattering in generating current-induced torques in magnetic multilayers. Phys. Rev. B, 2000, vol. 62, iss. 18, 12317. https://doi.org/10.1103/PhysRevB.62.12317
Stiles M.D., Zangwill A. Anatomy of spin-transfer torque. Phys. Rev. B, 2002, vol. 66, iss. 1, 014407. https://doi.org/10.1103/PhysRevB.66.014407
Volkov S.О., Tkach О.P., Odnodvorets L.V., Huzhnya Ya.V. Magnetoresistive properties of nanosized film materials: variation of measuring currents and minimization of electronic noise. Journal Nano- And Electronic Physics, 2016, vol. 8, iss. 3, 0303. http://dx.doi.org/10.21272/jnep.8(3).03030
Druzhinin A., Ostrovskii I., Khoverko Yu., Yatsukhnenko S. Magnetic properties of doped Si whiskers for spintronics. Journal of Nano Research, 2016, vol. 39, pp. 43–54. https://doi.org/10.4028/www.scientific.net/JNanoR.39.43
Yatsukhnenko S., Druzhinin A., Ostrovskii I. et al. Nanoscale conductive channels in silicon whiskers with nickel impurity. Nanoscale Research Letters, 2017, vol. 12, iss. 78, pp. 1–7. https://doi.org/10.1186/s11671-017-1855-9
Druzhinin A., Ostrovskii I., Khoverko Y. et al. Peculiarities of magnetoresistance in InSb whiskers at cryogenic temperatures. Materials Research Bulletin, 2015, vol. 72, pp. 324–330. https://doi.org/10.1016/j.materresbull.2015.08.016
Druzhinin A., Ostrovskii I., Khoverko Yu. et al. Berry phase in strained InSb whiskers. Low Temperature Physics, 2018, vol. 44, pp. 1189–1194. https://doi.org/10.1063/1.5060974
Murakawa H., Bahramy M. S., Tokunaga M. et al. Detection of Berry’s phase in a bulk Rashba semiconductor. Science, 2013, vol. 342, iss. 6165, pp. 1490–1493. https://doi.org/10.1126/science.1242247
Veldhorst M ., Snelder M ., Hoek M . et al . Magnetotransport and induced superconductivity in Bi based three-dimensional topological insulators. Phys. Status Solidi, 2013, vol. 7, iss. 1–2, pp. 26–38. https://doi.org/10.1002/pssr.201206408
Nikolaeva A., Konopko L., Huberc T. E. et al. Effect of weak and high magnetic fields in longitudinal and transverse configurations on maneto-thermoelectric properties of quantum Bi wires. Surface Engineering and Applied Electrochemistry, 2014, vol. 50, iss. 1, pp. 57–62. http://dx.doi.org/10.3103/S1068375514010128
Druzhinin A.A., Lavitska E.N., Maryamova I.I., Kunert H.W. Stress imposing during microcrystals characterization at cryogenic temperatures. Advanced Engineering Materials, 2002, vol. 4, iss. 8, pp. 589–592. https://doi.org/10.1002/1527-648(20020806)4:8%3C589::AIDADEM589%3E3.0.CO;2-F
Xiaoling Zhang, Qingduan Meng, Liwen Zhang. Dependence of the deformation of 128×128 InSb focalplane arrays on the silicon readout integrated circuit thickness. The Open Electrical & Electronic Engineering Journal, 2015, vol. 9, pp. 170–174. http://dx.doi.org/10.2174/1874129001509010170
Liwen Zhang, Jiexin Pu1, Ming Shao, Na Li. Numerical simulation and analysis of thermal stress in 8×8 InSb detector integrated microlens arrays with underfill. Journal of Convergence Information Technology, 2012, vol. 7, iss. 8.
Botcharova E., Freudenberger J., Schultz L. Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu–Nb alloys. Acta Materialia, 2006, vol. 54, iss. 12, pp. 3333–3341. https://doi.org/10.1016/j.actamat.2006.03.021
Smith C.S. Piezoresistance effect in germanium and silicon. Phys. Rev., 1954, vol. 94, iss. 1, pp. 42–49. https://doi.org/10.1103/PhysRev.94.42
Druzhinin A., Ostrovskii I., Khoverko Yu. et al. Variable-range hopping conductance in Si whiskers. Phys. Status Solidi A, 2014, vol. 211, iss. 2, pp. 504–508. https://doi.org/10.1002/pssa.201300162
Vanger А .I . , Zabrodsk i i А .G . , T isnek Т .V . Magnetoresistance of compensated Ge:As at ultrahigh frequencies in the metal-insulator phase transition region. FTP, 2000, vol. 34, iss. 7, pp. 774–782. (Rus). https://journals.ioffe.ru/articles/37181
Litvinenko K.L., Nikzad L., Pidgeon C.R. et al. Temperature dependence of the electron Landé g factor in InSb and GaAs. Phys. Rev. B, 2008, vol. 77, iss. 3, 033204. https://doi.org/10.1103/PhysRevB.77.033204
Barlian A.A., Park S.J., Mukundan V., Pruitt B.L. Design and characterization of microfabricated piezoresistive floating element-based shear stress sensors. Sens. Actuators A, 2007, vol. 134, iss. 1, pp. 77–87. https://doi.org/10.1016/j.sna.2006.04.035
Naumova O.V., Popov V.P., Aseev A.I. et al. Siliconon-insulator nanowire transistor for medical biosensors. In EuroSOI International conference, 2009, Goteborg, pp. 69–70. https://doi.org/10.1007/978-3-642-15868-1
Günel H. Y., Batov I. E., Hardtdegen H. et al. Supercurrent in Nb/InAs-nanowire/Nb Josephson junctions. J. Appl. Phys., 2012, vol. 112, iss. 3, 034316. https://doi.org/10.1063/1.4745024
Claeys C., Simon E. Perspectives of silicon-oninsulator technologies for cryogenic electronics. In: Hemment P.L.F., Lysenko V.S., Nazarov A.N. (eds) Perspectives, Science and Technologies for Novel Silicon on Insulator Devices. NATO Science Series (Series 3. High Technology), vol. 73. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4261-8_23
Rife J.C., Miller M.M., Sheehan P.E. et al. Design and performance of GMR sensors for the detection of magnetic microbeads in biosensors. Sensors and Actuators, 2003, A107, pp. 209–218. https://doi.org/10.1016/S0924-4247(03)00380-7
Lagae L., Wirix-Speetjens R., Das J. et al. On-chip manipulation and magnetization assessment of magnetic bead ensembles by integrated spin-valve sensors. J. Appl. Phys., 2002, vol. 91, iss. 7786, pp. 7445–7447. https://doi.org/10.1063/1.1447288
Copyright (c) 2019 Druzhinin A. O., Khoverko Yu. M., Ostrovskii I. P., Liakh-Kaguy N. S., Pasynkova O. A.

This work is licensed under a Creative Commons Attribution 4.0 International License.