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УДК 621.396.96+004.932

ПОРІВНЯЛЬНИЙ АНАЛІЗ МЕТОДІВ АВТОМАТИЧНОЇ 
КЛАСИФІКАЦІЇ ЦИФРОВИХ МОДУЛЯЦІЙ НА ОСНОВІ 
ГЛИБИННИХ НЕЙРОННИХ МЕРЕЖ

Автоматична класифікація цифрових способів 
модуляції (англ. automatic modulation classification, 
AMC) є однією з базових задач аналізу радіосигна-
лів у системах радіомоніторингу, когнітивного радіо 
та сучасних телекомунікаційних систем. Результати 
класифікації застосовуються для оцінювання параме-
трів сигналів, ідентифікації типу передавання інфор-
мації та адаптації приймальних алгоритмів до змін-
них умов каналу. Особливої актуальності ця задача 
набуває в умовах зашумлених каналів, коли відно-
шення сигнал/шум (signal-to-noise ratio, SNR) змі-
нюється в широкому діапазоні та істотно впливає на 
якість прийнятих рішень.

Класичні підходи до AMC ґрунтуються на вико-
ристанні наперед заданих інженерних ознак, зокре-
ма статистичних моментів, кумулянтів та спектраль-
них характеристик сигналів [1]. Попри відносну про-
стоту реалізації та інтерпретованість, ефективність 
таких методів суттєво знижується за низьких зна-
чень SNR і при збільшенні кількості класів модуля-
ції, що обмежує їх практичне застосування у склад-
них радіоумовах.

Подальший розвиток методів AMC пов’язаний із 
застосуванням глибинного навчання, яке дозволило 
перейти від ручного формування ознак до безпосе-
реднього аналізу часових послідовностей комплекс­
них відліків квадратурних складових (далі — комп-
лексних I/Q­відліків). Перші роботи із використан-
ням згорткових нейронних мереж продемонстру-
вали суттєве підвищення точності класифікації по-
рівняно з класичними методами, що було показа-
но на відкритих наборах даних цифрових модуля-
цій [2]. Подальше розширення досліджень пов’язане 

Порівняно методи автоматичної класифікації цифрових способів модуляції радіосигналів у широкому діапазоні від-
ношення сигнал/шум. Розглянуто дві сучасні глибинні нейронні мережі: згорткову та резидуальну з комплексними 
згортками, навчання яких проводилось у декількох режимах, зокрема на окремих рівнях шуму, на повному діапазоні 
та  поетапне навчання зі зростанням складності. Представлено експериментальні результати на великому наборі 
радіо  сигналів, проаналізовано матриці змішування класів цифрових способів модуляції та залежність точності кла-
сифікації від рівня шуму. Показано переваги резидуальної мережі під час розпізнавання сигналів зі значним рівнем завад.

Ключові слова: класифікація цифрових способів модуляції, цифрові сигнали, резидуальна нейронна мережа, згорткова 
нейронна мережа, відношення сигнал/шум, глибинне навчання, завадостійкість.

з появою більш складних наборів даних, зокрема 
RadioML2018.01A, які охоплюють ширший діапазон 
значень відношення сигнал/шум і різноманітні типи 
канальних спотворень [3].

Порівняно з класичними схемами автоматичної 
класифікації модуляції, що базуються на рішеннях у 
вигляді паралельного включення демодуляторів і ви-
рішального пристрою, нейромережеві підходи мають 
низку принципових переваг. Наприклад, вони не по-
требують явного виділення інженерних ознак або по-
переднього вибору моделей сигналів, оскільки фор-
мують ознакові представлення безпосередньо з часо-
вих послідовностей комплексних I/Q­відліків. Крім 
того, нейромережеві класифікатори демонструють 
вищу завадостійкість у широкому діапазоні відно-
шення сигнал/шум, оскільки здатні адаптивно вра-
ховувати нелінійні та високорозмірні залежності, 
які складно формалізувати в рамках класичних ал-
горитмів. Це особливо важливо в умовах обмеженої 
апріорної інформації про параметри сигналу та ка-
нал передачі.

З точки зору обчислювальної складності, основ ні 
витрати припадають на етап навчання моделей, який 
виконується офлайн. Після навчання складність кла-
сифікації одного сигналу визначається фіксованою 
кількістю операцій згортки та матричних перетво-
рень і не залежить від кількості можливих класів у 
такий спосіб, як у схемах з паралельними демоду-
ляторами. Це робить нейромережеві AMC­підходи 
привабливими для практичної реалізації в сучасних 
програмно­апаратних системах.

Узагальнення сучасних підходів до глибинного 
навчання в задачах AMC наведено в оглядових робо-
тах, де підкреслюється роль представлення сигналів, 
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вибору архітектури нейронної мережі та методів на-
вчання для забезпечення завадостійкості класифікато-
рів [4]. Зокрема, зазначається, що згорткові ней ронні 
мережі демонструють високу ефективність за серед-
ніх і високих значень відношення сигнал/шум, однак 
їхня здатність до узагальнення результатів у шумо-
вих умовах залишається обмеженою.

Одним із перспективних напрямів підвищення за-
вадостійкості є використання резидуальних нейрон-
них мереж, які завдяки наявності залишкових зв’язків 
забезпечують стабільніше навчання глибинних моде-
лей. Ефективність таких архітектур у задачах AMC 
підтверджується результатами сучасних досліджень, 
де показано покращення якості розпізнавання в умо-
вах зниженого відношення сигнал/шум [5]. Водночас 
більшість наявних робіт зосереджується на аналізі 
окремих архітектур або окремих значень SNR, що 
ускладнює порівняння їхньої ефективності.

Метою цієї роботи є порівняння ефективно сті 
згорткової нейронної мережі та резидуальної нейрон-
ної мережі у задачі AMC в умовах змінного рівня 
шуму. Основна увага приділяється оцінюванню зава-
достійкості нейромережевих моделей та їх здатно сті 
до узагальнення результатів у широкому діапазоні 
значень відношення сигнал/шум.

Це дослідження є продовженням наших попе-
редніх робот [6], [7], присвячених аналізу зашум-
лених та структурно складних радіосигналів, і роз-
виває загальний підхід до застосування методів ма-
шинного навчання для їх обробки в умовах змінно-
го рівня шуму.

Архітектура глибинних моделей для AMC
З урахуванням вимог до точності AMC та обме-

жень обчислювальних ресурсів у системах аналізу ра-
діосигналів розглянемо архітектури двох глибинних 
нейронних мереж: базової згорткової (convolutional 
neural network, CNN) та більш складної, резидуаль-
ної (residual neural network, ResNet). Обидві моде-
лі безпосередньо обробляють часові послідовності 
ком плексних I/Q­відліків та формують оцінку ймо-
вірностей належності сигналу до одного з досліджу-
ваних класів модуляції.

CNN використовується як базова модель для по-
рівняння. Подібні архітектури широко застосовують-
ся у задачах AMC і демонструють високу ефектив-
ність при середніх та високих значеннях відношен-
ня сигнал/шум [2], [8]. У цьому дослідженні CNN 
побудована як послідовність одномірних згортко-
вих блоків із нормалізацією та підвибіркою, що за-
безпечує поступове виділення інформативних часо-
вих ознак сигналу. Агрегація ознак здійснюється за 
допомогою глобального усереднення, що дозволяє 
обмежити кількість параметрів моделі та зменшити 
ризик перенавчання. Загальна кількість параметрів 
CNN становить близько 4·105, що робить її придат-

ною для використання в системах з обмеженими об-
числювальними ресурсами.

Для підвищення здатності моделі до узагальнен-
ня у шумових умовах розглянемо також ResNet, по-
будовану на основі залишкових блоків із прямими 
з’єднаннями. Використання таких з’єднань дозво-
ляє стабілізувати процес навчання глибинних ме-
реж та зменшити вплив деградації градієнтів, що є 
важливим для аналізу складних часових структур 
сигналів [5], [9]. Резидуальна модель містить кіль-
ка послідовних блоків із поступовим збільшенням 
кількості каналів та зменшенням часової роздільної 
здатності, що дозволяє враховувати локальні та гло-
бальні особливості сигналів різних типів модуляції. 
Кількість параметрів ResNet­подібної моделі пере-
вищує 106, що забезпечує вищу здатність до форму-
вання ознакових представлень порівняно з базовою 
CNN, але супроводжується більшими обчислюваль-
ними витратами.

Обидві архітектури мають уніфіковану вихідну 
частину, яка містить агрегування ознак та повно­
зв’язний класифікаційний шар із функцією актива-
ції Softmax. Такий підхід забезпечує коректне по-
рівняння моделей за ідентичних умов навчання та 
тестування. Застосування двох архітектур із суттє-
во різною складністю дозволяє дослідити, наскіль-
ки ускладнення моделі та використання залишкових 
зв’язків впливають на якість AMC у широкому діа-
пазоні значень SNR.

Сценарій навчання  
та експериментальний план

Для забезпечення коректного порівняння двох ней­
ромережевих архітектур CNN та ResNet усі експери-
менти проводилися на основі єдиного набору даних 
RadioML2018.01A з використанням уніфікованих про-
цедур попередньої обробки, навчання та оцінювання. 
Такий підхід забезпечує мінімізацію впливу сторон-
ніх факторів і відтворюваність отриманих результатів.

Для дослідження було використано вибірку з на-
бору даних, що містить вісім найбільш поширених 
модуляцій: BPSK, QPSK, 8PSK, 16QAM, 64QAM, 
GFSK, CPFSK, GMSK, представлених у вигляді ча-
сових послідовностей комплексних I/Q­відліків дов­
жиною 1024. Рівень відношення сигнал/шум у ви-
бірках змінювався в діапазоні від −10 до +10 дБ, що 
є критичним для практичної класифікації сигналів у 
шумових умовах. Перед поданням на вхід нейроме-
режевих моделей сигнали нормалізувалися за серед-
ньоквадратичним значенням.

Навчання моделей здійснювалося з використан-
ням кількох режимів, що відрізнялися характером шу-
мового навантаження у навчальних даних. Зокрема, 
розглядалися режими навчання на фіксованому зна-
ченні SNR, на високих значеннях SNR, на повно-
му діапазоні шумів (full), а також режим поступово-
го введення шуму (curriculum learning). Такий вибір 
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режимів дозволяє оцінити вплив як архітектури не-
йронної мережі, так і стратегії навчання моделі на її 
здатність до узагальнення результатів у змінних шу-
мових умовах.

Для обох архітектур застосовувалися однакові на-
лаштування оптимізації та параметри навчання, що 
забезпечує коректність порівняння. Навчання прово-
дилося з обмеженою кількістю епох із використан-
ням механізмів ранньої зупинки та адаптації швид-
кості навчання на основі значень точності на контр-
ольній вибірці. Як функцію втрат використовували 
крос­ентропійну функцію, а основними метриками 
оцінювання були точність класифікації цифрових 
способів модуляції та точність за двома найбільш 
ймовірними класами.

Результати оцінювалися на єдиній тестовій мно-
жині для кожного значення SNR у досліджуваному 
діапазоні. Окрім кількісних показників формувалися 
матриці невідповідностей, що забезпечують якісний 
аналіз характерних міжкласових помилок і дозволя-
ють виявити закономірності, пов’язані зі структур-
ною подібністю окремих типів модуляцій.

Запропонований експериментальний план за-
безпечує узгоджене та репрезентативне порівняння 
ней ромережевих моделей різної складності та дає 
можливість обґрунтовано оцінити вплив архітекту-
ри та стратегії навчання на ефективність AMC у шу-
мових умовах.

Для кількісного оцінювання якості AMC вико-
ристаємо метрики точності класифікації (accuracy). 
Точність класифікації для фіксованого значення SNR 
визначається як

1

1 ˆAccuracy( ) 1{( ) },
sN

i i
s i

s y y
N =

= =å , (1)

де Ns — кількість тестових зразків із відношення сигнал/
шум;

yi — істинна мітка модуляції i­го сигналу;
ŷi  — передбачений клас моделі;

1{.} — індикаторна функція, що дорівнює 1, якщо умо-
ва істинна, і 0, якщо інакше.

Для додаткового оцінювання якості розпізнаван-
ня використовувалася метрика точності за двома най-
більш ймовірними класами (далі — точність Top­2), 
яка визначає частку випадків, коли істинний клас мо-
дуляції входить до двох найбільш імовірних перед-
бачень моделі
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де ˆ ip  — вектор прогнозованих ймовірностей для 
всіх класів;

( )ˆTop2 ip  — множина двох класів з найбільшими ймо-
вірностями.

Метрика точності Top­2 є інформативним показ-
ником якості AMC, оскільки допомагає оцінити сту-

пінь наближеності помилкових рішень моделі до 
 істинного класу. Для модуляцій, які характеризуються 
близькими сигнальними властивостями та часто де-
монструють взаємне змішування (зокрема, 16QAM та 
64QAM), використання точності Top­2 дозволяє ви-
значити, чи формує модель коректні ознакові пред-
ставлення сигналів, навіть у випадках, коли остаточ-
не рішення не відповідає істинному класу.

Усі експерименти з моделювання та обробка даних 
проводилися в програмному середовищі Python з ви-
користанням відкритих бібліотек для обробки сигна-
лів і глибинного навчання. Формування та поперед ня 
обробка вибірок виконувалися за допомогою біблі-
отек NumPy та SciPy, тоді як реалізація нейромере-
жевих моделей і процес навчання — з використан-
ням фреймворку TensorFlow/Keras.

Навчання та тестування моделей проводилося у 
відтворюваному експериментальному середовищі з 
фіксованими початковими значеннями генераторів 
випадкових чисел, що забезпечує стабільність і по-
рівнюваність результатів. Для прискорення обчислень 
використовувалося апаратне прискорення на графіч-
ному процесорі, однак запропонований підхід є не-
залежним від апаратної платформи та може бути від-
творений у стандартному програмному середовищі 
загального призначення.

Методика експерименту передбачала розділення 
даних на навчальну, валідаційну та тестову множи-
ни з однаковим розподілом за класами модуляції та 
значеннями відношення сигнал/шум. Якість класи-
фікації оцінювалася виключно на тестовій множині, 
яка не використовувалася на етапі навчання або під-
бору гіперпараметрів.

Результати експериментів
Проведемо порівняння моделей CNN та ResNet 

у розв’язанні задачі автоматичної класифікації циф-
рових способів модуляції у діапазоні значень SNR 
від −10 до +10 дБ. Оцінювання проводилося в різ-
них режимах навчання з використанням єдиної тес-
тової вибірки, що забезпечує об’єктивність отрима-
них результатів.

Як видно з рис. 1, у випадку навчання моделей на 
одному фіксованому рівні завад спостерігається ло-
кальне зростання точності поблизу значення SNR, на 
якому здійснювалося навчання, тоді як при відхилен-
ні від нього якість класифікації різко знижується. За 
критично високого рівня шумів (менше −6 дБ) точ-
ність обох моделей наближається до рівня випадкової
класифікації, що свідчить про втрату інформативних 
ознак сигналу в умовах сильного шуму.

Навчання на високих значеннях SNR забезпечує 
високу точність класифікації цифрових способів мо-
дуляції в умовах слабкого шуму, однак супроводжу-
ється суттєвим погіршенням результатів при змен-
шенні SNR. Така поведінка характерна як для CNN, 
так і для ResNet і свідчить про обмежену здатність 
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моделей, навчених у вузькому діапазоні рівня шумів, 
до узагальнення результатів у складніших умовах.

З рис. 1 видно, що у разі навчання на всьому до-
сліджуваному інтервалі обидві моделі демонструють 
найбільш рівномірну зміну як точності класифікації, 
так і точності Top­2, що проявляється у плавному 
зростанні показників без різких стрибків. Водночас 
використання стратегії навчання з послідовним вве-
денням шуму дозволяє досягти вищих значень точ-
ності та точності Top­2 у малозашумлених умовах, 
особливо для ResNet, однак супроводжується менш 
плавною зміною характеристик у середньому діапа-
зоні значень SNR. При цьому ResNet стабільно пере-
вершує CNN для всіх розглянутих стратегій навчан-
ня, що підтверджує його вищу здатність до форму-
вання узагальнених ознакових представлень за на-
явності шуму.

Додатковий аналіз матриць невідповідностей 
(рис. 2) дозволив виявити характерні тенденції між-

класових помилок для розглянутих архітектур. Для 
обох моделей основні труднощі пов’язані з розріз-
ненням модуляцій із близькими сигнальними ха-
рактеристиками, зокрема фазових модуляцій, а та-
кож модуляцій одного сімейства, таких як 16QAM 
та 64QAM. Натомість модуляції з більш відмінними 
спектрально­часовими властивостями, зокрема час-
тотні модуляції, у більшості випадків демонструють 
кращу відокремлюваність у всьому досліджуваному 
діапазоні значень SNR.

Застосування стратегії навчання з послідовним вве-
денням шуму супроводжується зменшенням інтенсив-
ності міжкласового змішування та більш впорядкова-
ним розподілом помилок у матрицях невідповіднос-
тей, що особливо виразно проявляється для ResNet.

Таким чином, результати експериментів свід-
чать, що стратегія навчання має не менший вплив на 
якість AMC, ніж вибір нейромережевої архітектури. 
Поєднання ResNet із навчанням у широкому діапазо-
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Рис. 2. Залежність точності класифікації (а) та точності Top­2 (б) від відношення сигнал/шум
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Рис. 2. Матриці невідповідностей для досліджуваних нейромережевих моделей
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ні шумових умов забезпечує найбільш збалансовану 
завадостійкість та стабільність класифікації.

Проведений аналіз показує, що ефективність AMC 
визначається сукупним впливом рівня шуму, архітек-
тури нейронної мережі та стратегії її навчання. За 
низьких значень SNR для обох досліджуваних моде-
лей спостерігається суттєве зниження точності кла-
сифікації, що є типовим для задач AMC і узгоджуєть-
ся з висновками сучасних оглядових досліджень [4].

Порівняння архітектур показало, що ResNet за-
безпечує вищі значення як загальної точності, так і 
точності Top­2 порівняно з базовою CNN, особли-
во за середніх і низьких значень SNR. Така перевага 
узгод жується з результатам робіт, у яких продемон-
стровано ефективність використання глибинних ар-
хітектур і залишкових з’єднань для підвищення за-
вадостійкості систем AMC [5, 9]. При цьому ResNet 
може розглядатися як коректна базова модель, що 
узгоджується з результатами, наведеними в літера-
турі з AMC на основі комплексних I/Q­відліків [2].

Аналіз впливу стратегій навчання показав, що мо-
делі, натреновані в обмеженому діапазоні шумових 
умов, демонструють прийнятну якість класифікації 
лише поблизу цього діапазону. Натомість навчання 
на широкому діапазоні SNR та застосування адап-
тивних стратегій сприяють формуванню більш ста-
більних ознакових представлень сигналів і забезпе-
чують рівномірнішу зміну точності класифікації в 
усьому досліджуваному інтервалі. Подібні законо-
мірності також описуються у сучасних досліджен-
нях, де підкреслюється визначальна роль сценарію 
навчання для забезпечення завадостійкості нейроме-
режевих AMC­систем [10].

Висновки
Проведений в роботі порівняльний аналіз архі-

тектур CNN та ResNet у задачі автоматичної класи-
фікації цифрових способів модуляції на основі часо-
вих послідовностей комплексних I/Q­відліків дозво-
лив встановити, що рівень шуму є ключовим чинни-
ком точності AMC: за низьких значень відношення 
сигнал­шум точність істотно знижується через де-
градацію інформативних ознак сигналу. Показано, 
що архітектура нейронної мережі визначає завадо­
стійкість системи: ResNet перевершує базову CNN 
за загальною та Top­2 точністю, особливо в умовах 
середнього та низького SNR. Доведено важливість 
стратегії навчання: використання широкого діапазону 
SNR та послідовного введення шуму забезпечує ста-
більнішу якість класифікації порівняно з навчанням 
у вузькому діапазоні. Аналіз матриць невідповіднос-
тей підтвердив характерні міжкласові помилки для 
близьких типів модуляцій, а метрика Top­2 точності 
дозволила адекватніше оцінити якість класифікації. 

Запропонований підхід орієнтований не лише на 
офлайн­аналіз, але й придатний для використання в 
режимі, близькому до реального часу:  після завер-

шення навчання моделі працюють у режимі прямо-
го поширення, що не потребує значних обчислюваль-
них ресурсів. Обробка одного фрагмента сигналу у 
вигляді послідовності комплексних I/Q­відліків фік-
сованої довжини виконується за час, суттєво менший 
за тривалість самого фрагмента, особливо за умови 
використання сучасних процесорів або вбудованих 
прискорювачів. Отже, запропонований підхід є су-
місним із вимогами реального часу для задач радіо-
моніторингу, когнітивного радіо та адаптивних при-
ймальних систем.

Таким чином, отримані результати підтверджують 
доцільність застосування глибинних архітектур із за-
лишковими з’єднаннями та адаптивних стратегій нав­
чання для підвищення завадостійко сті AMC­систем. 

Перспективними напрямами подальших дослі-
джень є поширення запропонованого підходу на 
 сигнали з розширеним спектром (зокрема, з псевдо-
випадковим перебудовуванням робочої частоти, чірпо-
вим та прямим розширенням спектра), а також аналіз 
впливу нестаціонарних умов каналу на ефективність 
класифікації. Окрему увагу слід приділити розроблен-
ню гібридних нейромережевих моделей та адаптивних 
стратегій навчання для підвищення завадостійкості за-
дач AMC у складних часово­частотних умовах. Крім 
того, перспективним є дослідження можливостей за-
стосування алгоритмів AMC на основі нейромереж у 
вбудованих обчислювальних системах з обмеженими 
ресурсами, призначених для децентралізованого та 
польового радіомоніторингу.
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COMPARATIVE ANALYSIS OF DIGITAL MODULATION CLASSIFICATION  
METHODS BASED ON DEEP NEURAL NETWORKS 
Automatic classification of digital modulation formats (AMC) is a critical component of modern radio monitoring systems, 
cognitive communication platforms, and interference-resilient wireless communication systems. The rapid expansion of 
wideband and dynamically varying radio environments creates the need for classifiers that remain reliable across a broad 
range of signal-to-noise ratios (SNR). Recent advances in deep learning have significantly improved digital modulation 
classification performance, yet the impact of training strategies and neural-network architectures under low-SNR conditions 
remains insufficiently studied. This work addresses this gap by performing a comparative evaluation of two deep neural 
architectures — a 1D Convolutional Neural Network (CNN) and a complex-valued Residual Network — trained and tested on 
a large-scale dataset of digitally modulated I/Q signals.

The research aimed to construct a mapping from raw time-domain I/Q sequences to discrete digital modulation labels while 
ensuring stability of the classifier with respect to SNR variations. Four training strategies are investigated: training at a single 
low SNR, training at a single high SNR, training over the full SNR range, and curriculum learning with gradually decreasing 
SNR. Both models are evaluated across the entire SNR interval using accuracy curves, Top-2 accuracy, and confusion matrices.

The experimental results demonstrate that the complex-valued Residual Network consistently outperforms the CNN, particularly 
in low-SNR scenarios, and benefits most from curriculum learning. The CNN provides competitive performance at moderate 
and high SNR but exhibits reduced robustness in noisy conditions. The findings highlight the practical relevance of selecting 
appropriate architectures and training schemes for reliable modulation classification in non-ideal radio environments. The 
presented framework enables reproducible benchmarking and can be applied to the design of noise-resilient AMC modules in 
real communication systems.

Keywords: digital modulation classification, digital signals, residual neural network; convolutional neural network; signal-to-
noise ratio; deep learning; noise robustness.
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