Д. П. СОЧЕСЛАВ

Украина, Одесская государственная академия холода E-mail: Vutys78@mail.ru

Дата поступления в редакцию 31.08 2010 г.

Оппонент к. т. н. А. А. АШЕУЛОВ (ЧНУ им. Ю. Федьковича, г. Черновцы)

РЕЖИМ РАБОТЫ ДВУХКАСКАДНОГО ТЕРМОЭЛЕКТРИЧЕСКОГО ОХЛАЖДАЮЩЕГО УСТРОЙСТВА, ОБЕСПЕЧИВАЮЩИЙ МИНИМАЛЬНУЮ ИНТЕНСИВНОСТЬ ОТКАЗОВ

Рассмотрена модель взаимосвязи показателей надежности и основных значимых параметров двухкаскадного термоэлектрического охлаждающего устройства с последовательным электрическим соединением каскадов.

Одним из основных требований, предъявляемых при проектировании термоэлектрических устройств (ТЭУ), является обеспечение заданных значений показателей надежности. В качестве основного показателя надежности ТЭУ выбрано время безотказной работы.

При определении показателей надежности каскадных ТЭУ (КТЭУ) в условиях эксплуатации, а именно интенсивности отказов λ и вероятности безотказной работы P, полагаем:

- все термоэлементы соединены электрически последовательно, включая каскады;
- выход из строя любого термоэлемента приводит к выходу из строя модуля и устройства в целом;
- события, заключающиеся в выходе термоэлементов из строя, принимаются независимыми;
- каждый термоэлемент в каскадах работает в одном и том же токовом режиме при различных температурных условиях;
- термоэлектрические модули и КТЭУ на их основе относятся к невосстанавливаемым изделиям.

Таким образом, показатели надежности ТЭУ рассматриваются при следующих допущениях:

- отказы термоэлементов происходят внезапно:
- интенсивность отказов отдельных термоэлементов не зависит от времени;
- время наработки до отказа распределяется по экспоненциальному закону.

Анализ зависимости показателей надежности от времени по данным испытаний и эксплуатации для различных законов распределения показывает, что для описания показателей надежности КТЭУ при Р>0,95 оправданно применение экспоненциального закона распределения (так как отказы КТЭУ сравнительно редки и распределены во времени с почти одинаковой плотностью при длительной эксплуатации, в связи с чем можно считать их интенсивность величиной постоянной) как наиболее простого для количественной оценки показателей надежности.

При проектировании КТЭУ обычно задаются: холодопроизводительность \mathcal{Q}_0 , т. е. суммарная тепловая нагрузка, температура теплопоглощающего спая T_0 и температура тепловыделяющего спая Т. Кроме того накладываются различные ограничения (по количеству термоэлементов в каскадах, потребляемой мощности, величине рабочего тока, интенсивности отказов и т. д.), с учетом которых необходимо определить токовый режим работы охлаждающего термоэлемента.

Определим режим работы КТЭУ с последовательным электрическим соединением каскадов при условии обеспечения минимальной интенсивности отказов и максимальной вероятности безотказной работы.

Рассматриваемые КТЭУ собираются, как правило, на базе унифицированных и одинаковых ветвей термоэлементов или стандартных модулей на их основе, и поэтому для всех N каскадов должно соблюдаться условие

$$B_i I_{\max_i} = B_{i+1} I_{\max_{i+1}} = \dots = B_N I_{\max_N}, \quad i=1,2,\dots,N,$$
 (1)

где для i-го каскада:

 B_i — относительный рабочий ток, $B_i = I/I_{\text{max}}$;

$$I_{\max_i}$$
 — максимальный рабочий ток, $I_{\max_i} = \frac{e_i T_{i-1}}{R_i};$ e_i — коэффициент термо-эдс ветви термоэлемента;

 T_{i-1} — температура теплопоглощающего спая; R_i — электрическое сопротивление ветви термоэле-

Общий перепад температуры на КТЭУ можно представить в виде

$$\Delta T = \sum_{i=1}^{N} \Delta T_i = \sum_{i=1}^{N} \Delta T_{\max_i} \Theta_i, \qquad (2)$$

 $\Delta T_{
m max_i}$ — максимальный перепад температуры, $\Delta T_{\max_i} = 0,5Z_i T_{i-1}^2;$

 Z_i — усредненный показатель термоэлектрической эффективности модуля;

эффективности модуля, $\Theta_1 = \frac{\Delta T_i}{\Delta T_{\max_i}};$ ΔT — рабочий перепад температуры, $\Delta T_i = T_i - T_{i-1}.$

При построении КТЭУ необходимо соблюдать условие стационарности процесса охлаждения (теплового сопряжения каскадов) — количество отводимо-

ОБЕСПЕЧЕНИЕ ТЕПЛОВЫХ РЕЖИМОВ

го тепла от предыдущего каскада должно быть равно холодопроизводительности последующего. Воспользуемся следующими известными соотношениями.

Из условия стационарности отношение количества термоэлементов в соседних каскадах можно записать как

$$\frac{n_{i+1}}{n_i} = \frac{I_{\max_i}^2 R_i}{I_{\max_{i+1}}^2 R_{i+1}} \frac{2B_i (1 + \frac{\Delta T_{\max_i}}{T_{i-q}} \Theta_i) + B_i^2 - \Theta_i}{2B_{i+1} - B_{i+1}^2 - \Theta_{i+1}}, \quad (3)$$

Холодопроизводительность КТЭУ определяется «холодным» (первым) каскадом и равна

$$Q_0 = n_1 I_{\text{max}_1}^2 R_1 (2B_1 - B_1^2 - \Theta_1). \tag{4}$$

Мощность потребления i-го каскада КТЭУ определяется по формуле

$$W_{i} = 2n_{i}I_{\max_{i}}^{2}R_{i}B_{i}(B_{1} + \frac{\Delta T_{\max_{i}}}{T_{i-1}}\Theta_{i}),$$
 (5)

а холодильный коэффициент КТЭУ

$$E^{N} = \frac{Q_0}{\sum_{i=1}^{N} W_i}.$$
 (6)

Суммарную интенсивность отказов КТЭУ можно представить в виде суммы интенсивностей отказов каждого каскада:

$$\lambda_{\Sigma} = \sum_{i=1}^{N} \lambda_{i}. \tag{7}$$

С учетом влияния температурных условий работы каждого каскада и тепловой нагрузки можно записать соотношения для определения относительной величины суммарной интенсивности отказов двух-каскалного ТЭУ:

$$\frac{\lambda_{\Sigma}}{\lambda_{0}} = \frac{n_{1}B_{1}^{2}(\Theta_{1} + C_{1})(B_{1} + \frac{\Delta T_{\max 1}}{T_{0}}\Theta_{1})^{2}}{(1 + \frac{\Delta T_{\max 1}}{T_{0}}\Theta_{1})^{2}}K_{T_{1}} +$$

$$+\frac{n_2 B_2^2 (\Theta_2 + C_2) (B_2 + \frac{\Delta T_{\text{max} 2}}{T_1} \Theta_2)^2}{(1 + \frac{\Delta T_{\text{max} 2}}{T_1} \Theta_2)^2} K_{T2},$$
(8)

где λ_0 — номинальная интенсивность отказов; $C_1,\ C_2$ — относительная тепловая нагрузка первого и второго каскада, соответственно,

$$C_1 = \frac{Q_0}{n_1 I_{\text{max}1}^2 R_1}, \ C_2 = \frac{Q_0 + W_1}{n_2 I_{\text{max}2}^2 R_2};$$

 K_{T_1} , K_{T_2} — коэффициенты значимости, учитывающие влияние пониженных температур [1, с. 67].

Для оценки вероятности безотказной работы P КТЭУ можно записать соотношение

$$P = \exp\left[-\sum_{i=1}^{N} \lambda_i t\right],\tag{9}$$

где t — назначенный ресурс.

Так как каждый термоэлемент в каскадах работает в одном и том же токовом режиме в различных

температурных условиях, выражение для определения оптимального относительного рабочего тока в режиме λ_{\min} можно представить в виде

$$B_1 = \eta_1 \Theta_1, \tag{10}$$

где η_1 — поправочный коэффициент токового режима первого каскада (**рис. 1**).

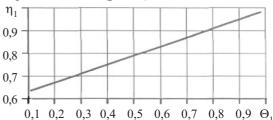


Рис. 1. Зависимость коэффициента токового режима от относительного перепада температуры в первом каскаде при T=300 K

Используя условие (1), после несложных преобразований получим соотношение для определения промежуточной температуры в режиме λ_{\min}

$$T_1^2 \varphi - T_0 T_1 (\varphi - 1) - T T_0 = 0,$$
 (11)

где
$$\varphi = \frac{\eta_1}{\eta_2}\beta;$$

$$\beta = \frac{e_1 \sigma_1 Z_2}{e_Z \sigma_2 Z_1}.$$

Промежуточную температуру T_1 определяем методом последовательных приближений. Предварительно приняв условие равенства перепадов температуры по каскадам, определяем e, σ , Z, $\Delta T_{\rm max}$, Θ , $I_{\rm max}$ для каждого каскада с учетом температурной зависимости параметров. Подставив полученные значения в (11), получим новое значение T_1 . Затем корректируем средние значения температуры по каскадам и вычисляем новые значения указанных величин. Практика показывает, что двух-трех приближений вполне достаточно для того, чтобы значения промежуточной температуры T_1 сходились в пределах 1%.

Результаты расчетов основных параметров и показателей надежности КТЭУ при T=300 K, перепадах температуры ΔT =60, 70, 80, 90 K, величине тепловой нагрузки Q_0 от 0 до 1,2 Вт и t=10⁴ ч, λ_0 =3·10⁻⁸ 1/ч показаны на рис. 2—5.

Анализ расчетных данных показал, что в рассматриваемом режиме λ_{\min} с ростом общего перепада температуры ΔT

— величина оптимальной промежуточной температуры T_1 уменьшается по линейной зависимости (рис. 2);

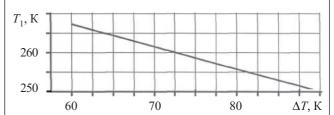


Рис. 2. Зависимость оптимальной прмежуточной температуры от общего перепада температуры

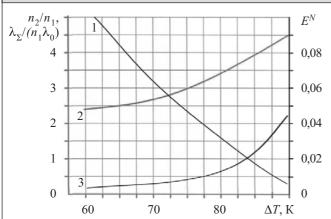


Рис. 3. Зависимость холодильного коэффициента E^N (1), отношения количества термоэлементов в смежных каскадах (2) и относительной величины суммарной интенсивности отказов (3) от общего перепада температуры

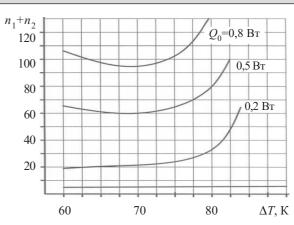
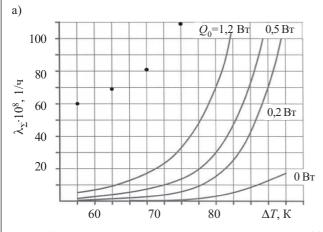



Рис. 4. Зависимость суммарного количества термоэлементов двухкаскадного ТЭУ от общего перепада температуры для различных значений Q_0

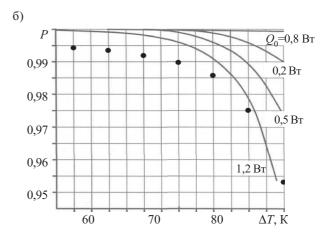


Рис. 5. Зависимость суммарной интенсивности отказов (a) и безотказной работы (b) от общего перепада температуры для различных значений Q_0

- холодильный коэффициент уменьшается (**рис. 3**, кривая 1);
- растет отношение числа термоэлементов в каскадах n_2/n_1 (рис. 3, кривая 2) и их суммарное количество (**рис. 4**);
- суммарная величина интенсивности отказов λ_{Σ} (рис. 5, a) и ее относительная величина $\frac{\lambda_{\Sigma}}{n_1\lambda_0}$ увеличиваются (рис. 3, кривая a);
- вероятность безотказной работы P уменьшается (рис. 5, δ).

При заданном перепаде температуры ΔT с ростом тепловой нагрузки суммарное количество термоэлементов увеличивается, растет интенсивность отказов, а вероятность безотказной работы уменьшается.

На рис. 5 точками обозначены данные экспериментальных исследований аналогичных конструкций КТЭУ при максимальном значении коэффициента режима K_p =1,0 [1, с. 24]. Ход экспериментальных зависимостей λ_{Σ} = $f(\Delta T)$ и P= $f(\Delta T)$ практически идентичен теоретическим для режима $Q_{0\,\mathrm{max}}$, т. е. модель взаимосвязи показателей надежности и основных значимых параметров можно использовать для других режимов.

Наибольшее отклонение теоретической величины интенсивности отказов от экспериментальной составляет не более 10%, что определяется погрешностью, вносимой измерительными средствами контроля температурного поля, отличием конструктивных и теплофизических параметров экспериментальных и теоретических аналогов КТЭУ.

Таким образом, полученные соотношения позволяют определять показатели надежности двухкаскадных ТЭУ в режиме, обеспечивающем минимальную суммарную интенсивность отказов и максимальную вероятность безотказной работы в широком диапазоне изменения перепада температуры и различной тепловой нагрузке.

Применение режима λ_{min} позволяет построить КТЭУ повышенной надежности при приемлемых энергозатратах.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Зайков В. П., Киншова Л. А., Моисеев В. Ф. Прогнозирование показателей надежности термоэлектрических охлаждающих устройств. Книга 1. Однокаскадные устройства. — Одесса: Политехпериодика, 2009. [Zaikov V. P., Kinshova L. A., Moiseev V. F. Prognozirovanie pokazatelei nadezhnosti termoelektricheskikh okhlazhdayushchikh ustroistv. Kniga 1. Odnokaskadnye ustroistva. Odessa. Politekhperiodika, 2009.]