## ЭЛЕКТРОННЫЕ СРЕДСТВА: ИССЛЕДОВАНИЯ, РАЗРАБОТКИ

Д. т. н. В. А. ДЗЕНЗЕРСКИЙ, М. А. БЕДА, Н. Е. ЖИТНИК, В. Н. ЛЕСНИЧИЙ, д. ф.-м. н. С. В. ПЛАКСИН, Ю. А. ТКАЧЕНКО

Украина, г. Днепропетровск, Институт транспортных систем и технологий НАНУ «Трансмаг»

E-mail: tkachenko@westa-inter.com

Дата поступления в редакцию 31.08 2010 г.

Оппонент к. т. н. Б. А. ДЕМЬЯНЧУК (ОНУ им. Мечникова, г. Одесса)

## АВТОМАТИЗИРОВАННАЯ ДИАГНОСТИКА ХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА

Предложен метод диагностики, основанный на анализе хронопотенциограмм, отображающих кинетику электрохимического процесса в источнике тока в результате подачи на него тестового импульса, с последующей компьютерной обработкой результатов.

В связи с расширением сферы использования химических источников тока (XИТ) с появлением таких потребителей как системы телекоммуникаций и связи, гибридный и электротранспорт, автономные электростанции малой и средней мощности возникает задача не только существенно увеличить объем производства XИТ, но и повысить их качественные показатели. Последнее неразрывно связано с созданием более современных методов и средств диагностики состояния XИТ как в процессе производства, так и в период их эксплуатации.

Благодаря широкому внедрению импульсных методов формирования и зарядки ХИТ повысился интерес к импульсным (нестационарным) методам диагностики, обеспечивающим более широкие информационные возможности, чем традиционные методы, и позволяющим совмещать процессы формировки, зарядки и энергообеспечения с процессами контроля и измерения текущих параметров ХИТ. Варианты технической реализации и информационной достоверности импульсных методов диагностики ХИТ проанализированы в [1—3]. Однако их явное преимущество, связанное с увеличением числа измеряемых параметров, теряется при использовании трудоемких ручных методов обработки и анализа результатов измерений.

Необходимость разработки методов автоматизированной диагностики состояния химических источников тока и создания на их основе систем мониторинга определяет актуальность работ в этой области. Одним из путей решения такой задачи является разработка метода автоматизированной обработки результатов измерения совокупности текущих параметров хит

В настоящей работе предлагается метод, основанный на анализе хронопотенциограмм (ХПГ), отображающих кинетику электрохимического процесса в источнике в результате подачи на него тестового импульса.

Реакция ХИТ на токовый импульс постоянной величины как функция напряжения на клеммах источника тока от времени содержит достаточно полную и объективную информацию о кинетических параметрах процесса, которая может быть использована для определения параметров ХИТ. Обоснование связи кинетических параметров электрохимического процесса с параметрами ХИТ применительно к свинцово-кислотным аккумуляторам, а также требования к параметрам импульса тока приведены в [4].

Изучение кинетики процессов в ХИТ импульсным методом позволило выделить ряд параметров, которые могут быть использованы как базовые для диагностики химического источника тока, а также как информационно-управляющие при реализации адаптивных режимов зарядки ХИТ [5]. Совокупность одновременно измеряемых информационных параметров и алгоритм адаптивной зарядки ХИТ с их использованием описаны в [5, 6].

Графическая форма реального отклика XИТ на токовый импульс в виде функциональной зависимости напряжения от времени приведена на **рис. 1** и отображает кинетику электрохимического процесса

Из рисунка видно, что при анализе ХПГ можно получить следующие параметры:  $U_{\rm pu}$  — напряжение разомкнутой цепи;  $U_{\rm a1}, U_{\rm a2}$ — падение напряжения на активном внутреннем сопротивлении ХИТ в моменты подачи и снятия импульса, соответственно;  $U_{\text{пк}}$ концентрационная составляющая напряжения поляризации;  $U_{\rm ex}$  — электрохимическая составляющая напряжения поляризации;  $U_{\rm n} = U_{\rm ex} + U_{\rm nr}$  — полное напряжение поляризации;  $t_{\text{эх}}$  — время протекания электрохимической стадии процесса;  $t_{\rm u}$  — длительность импульса тока;  $t_{\rm cn}$  — длительность спада потенциала с момента снятия импульса тока;  $U_{\rm cnk}$  — конечное значение напряжения спада при  $t_{\rm cn} = n \tau$ , где  $\tau$  — постоянная времени разряда электрохимической системы, *п* — коэффициент, учитывающий точность определения параметра.

Для постоянной времени разряда XИТ  $\tau$  справедливо соотношение  $\tau = R_{\rm n} C_{\rm n}$ , где  $R_{\rm n}$  — сопротивление поляризации,  $C_{\rm n}$  — псевдоемкость химического источника тока

С другой стороны, величину  $\tau$ , а следовательно, и псевдоемкость можно определить из времени спада  $t_{\rm cn}$ , полученного из XПГ химического источника тока. Значение поляризационного сопротивления опреде-

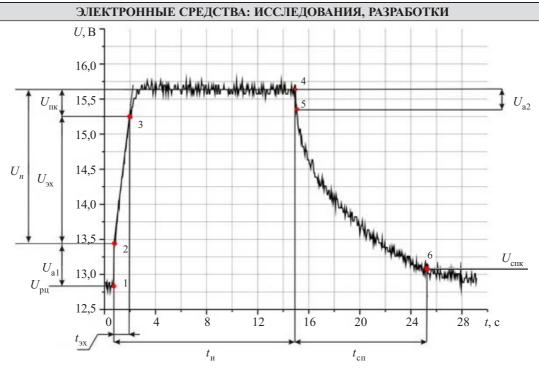



Рис. 1. Хронопотенциограмма свинцово-кислотной аккумуляторной батареи

ляли из отношения величины падения напряжения  $U_{\rm n}$  на поляризационном сопротивлении к величине зарядного тока  $I_{\rm 3}$ . В результате получено выражение для определения псевдоемкости  $C_{\rm m}$ 

$$t_{\rm cn}=n au=nrac{U_{
m n}}{I_{
m 3}}C_{
m n},$$
откуда

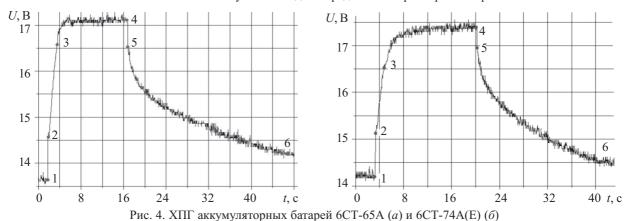
$$C_{\rm n} = \frac{t_{\rm cn}I_{\rm s}}{nU_{\rm n}}.$$

Установившееся значение напряжения на XИТ принимается равным  $U_{\rm pu}$ . Псевдоемкость  $C_{\rm n}$  является «фарадеевой», т. е. она обусловлена электрохимической реакцией и эквивалентна количеству запасенной источником химической энергии, которое пропорционально его электрической емкости, выраженной в ампер-часах.

Определение параметров связано с нахождением координат информационных точек, обозначенных на рисунке, ограничивающих участки хронопотенциограммы, которые соответствуют определенным стадиям электрохимического процесса. Координаты точек являются информационными признаками, и их определение, как видно из рисунка, в большинстве случаев осложнено наличием шумов как электрохимической природы, сопровождающих процессы в ХИТ, так и вносимых измерительной аппаратурой. Оптимальными методами анализа параметров, измеренных в условиях шумов больших уровней, могут быть математические методы обработки сигналов.

Для автоматизации процесса определения параметров XИТ был разработан метод обработки хронопотенциограмм в среде Mathcad [7], который позволяет программно рассчитывать параметры XИТ с последующей записью их в табличной форме.

Расчет производился по алгоритму, блок-схема которого показана на рис. 2, следующим образом.


- 1. Вначале производилось считывание данных измеренной хронопотенциограммы из текстового файла, выбор данных из нужных столбцов и их преобразование.
- 2. Сглаживание ХПГ с целью выделения полезного сигнала из шумов осуществлялось двумя различными фильтрами: medsmooth-сглаживание с помощью скользящей медианы и ksmooth с использованием гауссова ядра. Коэффициент сглаживания для фильтров выбирался из условия сохранения полезного сигнала.
- 3. Массив данных, сглаженный при помощи фильтра ksmooth, линейно интерполировался, а полученная функция дифференцировалась.
- 4. На кривой продифференцированных данных максимальное значение соответствовало координатам точки 2, а минимальное — координатам точки 4 (см. рис. 1).



Технология и конструирование в электронной аппаратуре, 2011, № 1–2

## ЭЛЕКТРОННЫЕ СРЕДСТВА: ИССЛЕДОВАНИЯ, РАЗРАБОТКИ Источник тока Самописец Персональный HM7044 **PCSU 1000** компьютер

Рис. 3. Блок-схема установки для определения параметров батарей



- 5. Координаты точек 1, 3, 5 и 6 рассчитывались из массива данных, обработанных фильтром medsmooth. Специфика такого сглаживания заключается в получении ступенчатого сигнала с ровными участками, что позволяет упростить и сделать более точным нахождение координат точек. Точки 1 и 5 находились из условия равенства координат двух соседних точек, а точки 3 и 6 — из условия, что значения координат по напряжению этих точек и следующих за ними N точек равны. Для повышения точности определения параметров ХИТ в полученные данные вносились поправки с учетом коэффициента сглаживания.
- 6. С помощью полученных значений координат ( $t_i$ ,  $Y_{ii}$ ) соответствующих точек производился расчет информационных параметров ХИТ и запись их в файл. Расчет параметров производится по сглаженному массиву данных  $Y_{ti}$ . При этом были использованы следующие обозначения: t — время дискретизации, t1—t6 — найденные программой численные значения координат точек 1—6. Тогда
  - напряжение разомкнутой цепи  $U_{\text{pu}} = Y_{t1}$ ;
- падение напряжения на активном внутреннем сопротивлении во время подачи импульса  $U_{a1} = Y_{t2} - Y_{t1}$ ;

- электрохимическая составляющая напряжения поляризации  $U_{_{\mathfrak{I}\mathfrak{I}}} = Y_{_{t\mathfrak{I}}} - Y_{_{t\mathfrak{I}}};$
- концентрационная составляющая напряжения поляризации  $U_{\text{пк}} = Y_{t4} - Y_{t3}$ ;
- падение напряжения на активном внутреннем со-
- противлении в момент снятия импульса  $U_{a2} = Y_{14} Y_{15};$  конечное значение напряжения спада  $U_{\rm cпк} = Y_{16};$  время протекания электрохимической стадии
- процесса  $t_{ax} = (t3-t2)t;$
- длительность спада потенциала с момента снятия импульса тока  $t_{cn} = (t6-t4)t$ ;
- крутизна участка, отражающего электрохимическую стадию процесса  $k=U_{3x}/t_{3x}$ .

Разработанный метод был апробирован при определении параметров свинцово-кислотных аккумуляторных батарей, имеющих различный срок эксплуатации и степень заряженности.

Блок-схема экспериментальной установки для автоматизированного определения параметров батарей приведена на рис. 3.

Для примера рассмотрим результаты определения параметров батареи 6СТ-65А, бывшей в эксплуатации, и новой аккумуляторной батареи 6СТ-74А(Е)

Результаты обработки информационных параметров ХИТ

| Папаметры<br>ХИТ                   | Батарея 6СТ-65А     |                       |                | Батарея 6СТ-74А (Е) |                       |                |
|------------------------------------|---------------------|-----------------------|----------------|---------------------|-----------------------|----------------|
|                                    | Ручная<br>обработка | Программная обработка |                | Ручная              | Программная обработка |                |
|                                    |                     | Результаты            | Погрешность, % | обработка           | Результаты            | Погрешность, % |
| $U_{ m pu}$ , В                    | 14,17               | 14,22                 | 0,4            | 13,65               | 13,67                 | 0,2            |
| $U_{\mathrm{al}},\mathrm{B}$       | 0,94                | 0,91                  | 3,3            | 0,90                | 0,88                  | 2,3            |
| $U_{9x}$ , B                       | 1,50                | 1,44                  | 4,2            | 2,05                | 1,88                  | 9,04           |
| $U_{\scriptscriptstyle \Pi K}$ , B | 0,75                | 0,87                  | 13,8           | 0,77                | 0,69                  | 11,6           |
| $U_{\mathrm{a2}},\mathrm{B}$       | 0,56                | 0,66                  | 15,2           | 0,67                | 0,63                  | 6,4            |
| $U_{\rm cn}$ , В                   | 14,73               | 14,49                 | 1,66           | 14,32               | 14,86                 | 3,6            |
| $t_{\rm ex}$ , c                   | 1,65                | 1,50                  | 10             | 1,66                | 1,50                  | 10,7           |
| <i>t</i> <sub>сп</sub> , с         | 18,6                | 20,9                  | 11             | 29                  | 27,4                  | 5,8            |
| k, B/c                             | 0,91                | 0,96                  | 5,2            | 1,24                | 1,25                  | 0,8            |

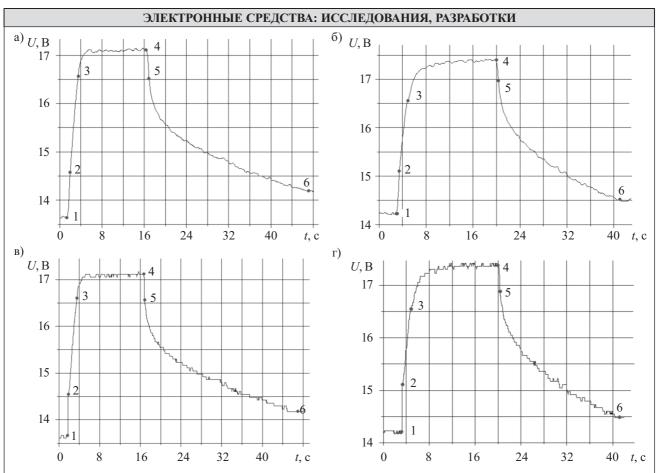



Рис. 5. ХПГ аккумуляторных батарей 6СТ-65А (a, e) и 6СТ-74А(E)  $(\mathfrak{G}, \varepsilon)$ , сглаженные с использованием функций ksmooth  $(a, \mathfrak{G})$  и medsmooth  $(e, \varepsilon)$ 

(ЗАО «Веста-Днепр»). Хронопотенциограммы этих батарей приведены на **рис. 4**. Те же ХПГ, обработанные по предлагаемому алгоритму, приведены на **рис. 5**, а результаты обработки значений параметров, полученных из этих ХПГ, отражены в **таблице**. При этом значение погрешности определяли из выражения

$$100\% - \frac{\text{Po}}{\Pi \text{o}} \cdot 100\%,$$

где Ро и По — результаты ручной и программной обработки соответственно. За 100% принималось значение, полученное при ручной обработке.

Сравнение результатов ручной и программной обработки подтверждает приемлемую точность определения параметров, которая зависит от степени зашумленности участка ХПГ в окрестности вычисления координат точки.

\*\*\*

Разработанный метод автоматизированной диагностики химических источников тока основан на программной обработке полученных из хронопотенциограммы и отфильтрованных из шумов кинетических параметров электрохимического процесса при подаче на ХИТ импульса тока. Математическая обработка значений кинетических параметров позволяет получить текущие параметры ХИТ на основе установленной между ними связи. Метод может быть использован в системах автоматизированного контроля параметров ХИТ при их производстве и в процессе эксплуатации.

## ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

- 1. Сиденко С. В., Безручко К. В., Давидов А. О. Диагностирование аккумуляторов энергоустановок летательных аппаратов импульсным током // Вісник Дніпропетровського ун-ту: серія «Ракетно-космічна техніка».— 2007.— № 9/2.— С. 126—132. [Sidenko S. V., Bezruchko K. V., Davidov A. O. // Visnik Dnipropetrovs'kogo untu: seriya «Raketno-kosmichna tekhnika». 2007. N 9/2. S. 126]
- 2. Патент 78327 України. Спосіб контролю стану свинцевого акумулятора / В. О. Дзензерський, М. Я. Житник, С. В. Плаксін та ін.— 15.03.2004. [Patent 78327 Ukrayini / V. O. Dzenzers'kii, M. YA. Zhitnik, S. V. Plaksin ta in. 15.03.2004]
- 3. Hariprakash B., Martha S. K., Jaikumar Arthi, Shukla A. K. On-line monitoring of lead-acid batteries by galvanostatic non-destructive technique // Journal of Power Sources.— 2004.—Vol. 137.— P. 128—133.
- 4. Дзензерский В. А., Житник Н. Е., Плаксин С. В., Соколовский И. И. Контроль состояния стартерных свинцовых аккумуляторов хронопотенциометрическим методом // Електротехніка та електроенергетика. 2005. № 1. С. 13—18. [Dzenzerskii V. A., Zhitnik N. E., Plaksin S. V., Sokolovskii I. I. // Elektrotekhnika ta elektroenergetika. 2005. N 1. P. 13 ]
- 5. Житник Н. Е., Миропольский Ю. Л., Плаксин С. В. и др. Информационные параметры для реализации адаптивной зарядки вторичных химических источников тока // Технология и конструирование в электронной аппаратуре. 2008. № 5. С. 40—42. [Zhitnik N. E., Miropol'skii Yu. L., Plaksin S. V. i dr. // Tekhnologiya i konstruirovanie v elektronnoi apparature. 2008. N 5. P. 40]
- 6. Дзензерский В. А., Житник Н. Е., Плаксин С. В. и др. Метод многопараметрического контроля адаптивной зарядки вторичных химических источников тока // Электроника и связь. 2010. № 2. С. 51—56. [Dzenzerskii V. A., Zhitnik N. E., Plaksin S. V. i dr. // Elektronika i svyaz'. 2010. N 2. P. 51]
- 7. Макаров Е. Г. Mathcad: учебный курс. СПб.: Питер, 2009. [Makarov E. G. Mathcad: uchebnyi kurs. SPb. Piter. 2009]