Application of solar tracking systems for enhancing the energy yield of photovoltaic modules: a review

Keywords: solar tracker, sun tracking system, PV systems, solar energy, photovoltaic panels

Abstract

This paper presents a classification of solar trackers, their types, and the advantages and disadvantages of various algorithms for tracking the Sun’s daily movement. It is demonstrated that ensuring an optimal tilt angle of photovoltaic modules is one of the primary factors influencing the amount of electricity generated by solar power plants. Moreover, the economic benefits of their use are significant, as an increase in the generated electricity can enhance the profitability of investments in generation systems. The conducted studies indicate that efficiency improvements depend on the classification of the selected tracker based on its degrees of freedom, the tracking algorithm, and the installation site.

References

IRENA. Available at: https://www.irena.org/Data/View-data-by-topic/Capacity-and-Generation/Technologies (accessed 10.03.2025)

Chen Y. M., Lee C. H., Wu H. C. Calculation of the optimum installation angle for fixed solar-cell panels based on the genetic algorithm and the simulated-annealing method. IEEE Transactions on Energy Conversion, 2005, vol. 20, iss. 2, p. 467. https://doi.org/10.1109/tec.2004.832093

Mamun M. A. A., Islam. M. M., Hasanuzzaman M., Selvaraj J. Effect of tilt angle on the performance and electrical parameters of a PV module: Comparative indoor and outdoor experimental investigation. Energy and Built Environment, 2022, vol. 3, iss. 3, p. 278. https://doi.org/10.1016/j.enbenv.2021.02.001

Maghami M. R., Hizam H., Gomes C. et al. Power loss due to soiling on solar panel: A review. Renewable and Sustainable Energy Reviews, 2016, vol 59, p.1307. https://doi.org/10.1016/j.rser.2016.01.044

Amelia A.R., Irwan Y.M., Safwati I. et al. Technologies of solar tracking systems: A review. IOP Conference Series: Materials Science and Engineering, 2020, vol. 767, iss. 1, p. 012052. https://doi.org/10.1088/1757-899x/767/1/012052

Gupta P., Kumar B., Wankhade P. et al. Azimuth-altitude dual axis solar tracker. IOSR Journal of Electrical and Electronics Engineering, 2016, vol. 11, iss. 5, p. 2. https://doi.org/10.9790/1676-1105012630

Mahendran M., Ong H.L., Lee G. C., Thanikaikumaran K. An experimental comparison study between single-axis tracking and fixed photovoltaic solar panel efficiency and power output: case study in east coast Malaysia. Sustainable Development Conference, 2013, pp. 1-11.

Brito M. C., Pó J. M., Pereira D. et al. Passive solar tracker based in the differential thermal expansion of vertical strips. Journal of Renewable and Sustainable Energy, 2019, vol. 11, iss. 4, p. 043701. https://doi.org/10.1063/1.5100492

Clifford M. J., Eastwood D. Design of a novel passive solar tracker. Solar Energy, 2004, vol. 77, iss. 3, p. 269. https://doi.org/10.1016/j.solener.2004.06.009

Degeratu S., Rizescu S., Alboteanu L. et al. Using a shape memory alloy spring actuator to increase the performance of solar tracking system. Annals of the University of Craiova, Electrical Engineering series, 2014, vol. 38, p. 116.

Alemayehu M., Admasu B. T. Passive solar tracker using a bimetallic strip activator with an integrated night return mechanism. Heliyon, 2023, vol. 9, iss. 7, p. 18174. https://doi.org/10.1016/j.heliyon.2023.e18174

Pulungan A. B., Son L., Syafii. A riview of solar tracking control strategies. EECSI. Malang, Indonesia, 2018, p. 631-635.

Salgaonkar N.K., Shirodkar N.A., Yedurkar N. A., Mohite N.A. Automated dual axis solar tracking system using ldr sensors. International Journal of Engineering Research & Technology, 2017, vol. 6, iss. 07, pp. 279-282. https://doi.org/10.17577/ijertv6is070189

Ya’u M. J. A review on solar tracking systems and their classifications. Journal of Energy, Environmental & Chemical Engineering, 2017, vol. 2, iss. 3, p. 46. https://doi.org/10.11648/j.jeece.20170203.12

Kuttybay N., Saymbetov A., Mekhilef S. et al. Optimized single-axis schedule solar tracker in different weather conditions. Energies, 2020, vol. 13, iss. 19, p. 5226. https://doi.org/10.3390/en13195226

Musa A., Alozie E., Suleiman S. A. Et al. A review of time-based solar photovoltaic tracking systems. Information, 2023, vol. 14, iss. 4, p. 211. https://doi.org/10.3390/info14040211

Shankar G., Singh R. S. A review of solar energy tracker and models. Journal of Basic and Applied Engineering Research, 2014, vol. 1, iss. 9, pp. 110-114.

Tudorache T., Kreindler L. Design of a solar tracker system for PV power plants. Acta Polytechnica Hungari-ca, 2010, vol. 7, iss. 1, pp. 23-39.

Rinaldi R., Aprillia B. S., Ekaputri C., Reza M. Design of open loop single axis solar tracker system. IOP Conference Series: Materials Science and Engineering, 2020, vol. 982, iss. 1, p. 012016. https://doi.org/10.1088/1757-899x/982/1/012016

Akbar H. S., Fathallah M. N., Raoof O. O. Efficient single axis sun tracker design for photovoltaic system applications. IOSR Journal of Applied Physics, 2017, vol. 09, iss. 02, pp. 53-60. https://doi.org/10.9790/4861-0902025360

Prodhan M. M. H., Hamid M. K., Hussain D., Huq M. F. Design, construction and performance evaluation of an automatic solar tracker. Published online January 1, 2016, vol. 8, iss. 1, pp. 1-12. https://doi.org/10.3329/jsr.v8i1.23357

Mehdi G., Ali N., Hussain S. et al. Design and fabrication of automatic single axis solar tracker for solar panel. 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), 2019, pp. 1-4. https://doi.org/10.1109/icomet.2019.8673496

Chaijum N., Cheunchantawong L., Siriram T. Single-axis solar tracking system referring to date and time. Journal of Physics: Conference Series, 2021, vol. 2145, iss, 1, p. 012052. https://doi.org/10.1088/1742-6596/2145/1/012052

Gutierrez S., Rodrigo P. M., Alvarez J. et al. Development and testing of a single-axis photovoltaic sun tracker through the internet of things. Energies, 2020, vol. 13, iss. 10, p. 2547. https://doi.org/10.3390/en13102547

Pulungan A. B., Purwanto W., Maksum H. et al. Design and development of real time monitoring single axis solar tracker by using internet of things. International Journal of GEOMATE, 2020, vol. 18, iss. 69, pp. 81-87. https://doi.org/10.21660/2020.69.25863

Rosma I. H., Putra I. M., Sukma D. Y. et al. Analysis of single axis sun tracker system to increase solar photovoltaic energy production in the tropics. 2nd International Conference on Electrical Engineering and Informatics (Icon EEI). IEEE, 2018, pp. 183-186. https://doi.org/10.1109/icon-eei.2018.8784311

Ghodasara A., Jangid M., Ghadhesaria H. et al. IOT based dual axis solar tracker with power monitoring system. easychairorg. EasyChair Prepringt 5063, 2021.

Fathabadi H. Novel high accurate sensorless dual-axis solar tracking system controlled by maximum power point tracking unit of photovoltaic systems. Applied Energy, 2016, vol. 173, 448-459. https://doi.org/10.1016/j.apenergy.2016.03.109

Jamroen C., Komkum P., Kohsri S. et al. A low-cost dual-axis solar tracking system based on digital logic design: Design and implementation. Sustainable Energy Technologies and Assessments, 2020, vol. 37, p. 100618. https://doi.org/10.1016/j.seta.2019.100618

Thungsuk N., Tanaram T., Chaithanakulwat A. et al. Performance analysis of solar tracking systems by five-position angles with a single axis and dual axis. Energies, 2023, vol. 16, iss. 16, p. 5869. https://doi.org/10.3390/en16165869

Kumar S., Singh B., Banerjee S. et al. Performance comparison between arduino based dual axis solar tracker and fixed module. Journal of Information and Optimization Sciences, 2022, vol. 43, iss. 3, pp. 475-480. https://doi.org/10.1080/02522667.2022.2044000

Muthukumar P., Manikandan S., Muniraj R. et al. Energy efficient dual axis solar tracking system using IOT. Measurement: Sensors, 2023, vol. 28, p. 100825. https://doi.org/10.1016/j.measen.2023.100825

Akbar H. S., Siddiq A. I., Aziz M. W. microcontroller based dual axis sun tracking system for maximum solar energy generation. American Journal of Energy Research, 2017, vol. 5, iss. 1, pp. 23-27. https://doi.org/10.12691/ajer-5-1-3

Abdallah S., Nijmeh S. Two axes sun tracking system with PLC control. Energy Conversion and Management, 2004, vol. 45, iss. 11-12, pp. 1931-1939. https://doi.org/10.1016/j.enconman.2003.10.007

Anshory I., Jamaaluddin J., Fahruddin A, et al. Monitoring solar heat intensity of dual axis solar tracker control system: New approach. Case Studies in Thermal Engineering, 2024, vol. 53, p. 103791. https://doi.org/10.1016/j.csite.2023.103791

Ferdaus R. A., Mohammed M. A., Rahman S. et al. Energy efficient hybrid dual axis solar tracking system. Journal of Renewable Energy, 2014, vol. 2014, pp.1-12. https://doi.org/10.1155/2014/629717

Jumaat S. A., Said M. N. A. M., Jawa C. R. A. Dual axis solar tracker with IoT monitoring system using arduino. International Journal of Power Electronics and Drive Systems (IJPEDS), 2020, vol. 11, iss. 1, p. 451. https://doi.org/10.11591/ijpeds.v11.i1.pp451-458.

Mohaimin A. H., Uddin M. R., Law F. K. Design and fabrication of single-axis and dual-axis solar tracking systems. IEEE Student Conference on Research and Development (SCOReD), 2018, pp. 1-4. https://doi.org/10.1109/scored.2018.8711044

Gol A. E., Scasny M. Techno-economic analysis of fixed versus sun-tracking solar panels. International Journal of Renewable Energy Development-IJRED, 2023, vol. 12, iss. 3, pp. 615 – 626. https://doi.org/10.14710/ijred.2023.50165

Demirdelen T., Alıcı H., Esenboğa B., Güldürek M. "Performance and economic analysis of designed different solar tracking systems for Mediterranean climate." Energies, 2023, vol. 16, iss.10, p. 4197. https://doi.org/10.3390/en16104197

De Simón-Martín M., Alonso-Tristán C., Díez-Mediavilla M. Performance indicators for sun-tracking systems: A case study in Spain. Energy and Power Engineering, 2014, vol. 06, iss. 09, pp. 292-302. http://dx.doi.org/10.4236/epe.2014.69025

Praliyev N., Zhunis K., Kalel Y., Dikhanbayeva D. Impact of One-and Two-axis Solar Tracking on Techno-Economic Viability of On-Grid PV Systems: Case of Burnoye-1, Kazakhstan. International Journal of Sustainable Energy Planning and Management, 2022, vol. 29, pp. 79-80. https://doi.org/10.5278/ijsepm.3665

Liu Q., Wan. LCOE Analysis of Solar Tracker Application in China. Computational Water, Energy, and Environmental Engineering, 2020, vol. 09, iss. 04, pp. 87-100. https://doi.org/10.4236/cweee.2020.94007

Published
2025-06-30
How to Cite
Fedenko, V., & Dzundza, B. (2025). Application of solar tracking systems for enhancing the energy yield of photovoltaic modules: a review. Technology and Design in Electronic Equipment, (1–2), 27-33. https://doi.org/10.15222/TKEA2025.1-2.27