Effect of electron irradiation on the optical properties of nanocrystalline SiC films on single crystal Al2O3 substrates
Abstract
It was studied the effect of irradiation with high-energy (10 MeV) electrons on the optical properties of nanocrystalline carbide film system silicon / sapphire substrates in a wide range of fluences of 5·1014 to 2·1020 cm–2 and subsequent annealing in vacuum in the range of 200—1200°C. It was found that radiation-induced changes in the optical properties of nc SiC films are primarily manifested in the UV region of the spectrum associated with interband transitions, as well as in the region of the spectrum due to the absorption of intrinsic defects and disordered regions. It was established in the beginning of the annealing of defects in irradiated films has been observed at 200°C, which indicates the high concentration of carbon vacancies with the lowest activation energy. Significant changes in the optical properties of sapphire begin at fluence 5·1017 cm–2, which should be considered when using these materials under conditions of intense radiation impact.
References
Ackland G. Controlling radiation damage. Science. 2010, vol. 327, iss. 5973, pp. 1587-1588. http://dx.doi.org/10.1126/science.1188088
Misra A., Demkowicz M., Zhang X., Hoagland R. The radiation damage tolerance of ultra-high strength nanolayered composites. JOM, 2007,vol. 59, iss. 9, pp. 62-65. http://dx.doi.org/10.1007/s11837-007-0120-6
Samaras M., Hoffelner, W., Victoria M. Irradiation of pre-existing voids in nanocrystalline iron. J. Nucl. Mater, 2006, vol. 352, iss. 1-3, pp. 50-56. http://dx.doi. org/10.1016/j.jnucmat.2006.02.041.
Shen T.D., Feng Sh., Tang M., Valdez J.A., Wang Y., Sickafus K.E. Enhanced radiation tolerance in nanocrystalline MgGa2O4. Appl. Phys. Lett, 2007, vol. 90, i s s . 2 4 , p p . 2 6 3 1 1 5 - 2 6 3 1 2 0 . h t t p : / / d x . d o i .org/10.1063/1.3155855.
Hochbauer T., Misra A., Hattar K., Hoagland R. G. Influence of interfaces on the storage of ion-implanted He in multilayered metallic composites. J. Appl. Phys, 2005, vol. 98, iss. 12, pp. 123516-123524. http://dx.doi.org/10.1063/1.2149168.
Properties of Advanced Semiconductor Materials: GaN, A1N, InN, SiC, SiGe. Ed. by M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur. USA, N.Y., John Wiley & Sons, 2001, 216 p.
Barry A.L, Lehman B., Fritsch D., Brauning D. Mechanisms of unexpected reduction in hole concentration in Al-doped 4H-SiC 4H-SiC by 200 keV electron irradiation. IEEE Trans. Nucl. Sci, 1991, vol. 38, pp. 1111-1119, https://doi.org/IETNAE.
Kalinina E.V. The effect of irradiation on the properties of SiC and devices based on this compound. Semiconductors. 2007, vol. 41, iss. 7, pp. 745—783. https://doi.org/10.1134/S1063782607070019.
Lebedev A. A., Ivanov A. M., Strokan N. B. Radiation hardness of SiC and hard radiation detectors based on the SiC films. Semiconductors, 2004. vol. 38, iss. 12, pp. 125—131.
Semenov A.V., Puzikov V.M., Dobrotvorskaya M.V., Fedorov A.G., Lopin A.V. Nanocrystalliine SiC films prepared by direct deposition of carbon and silicon ions. Thin Solid Films, 2008, vol. 516, iss.10, pp. 2899-2905. https://doi.org/10.1016/j.tsf.2007.05.059
Brodyn M.S., Volkov V.I., Lyakhovetskii V.R., Rudenko V.I., Puzikov V.M., Semenov A.V. Nonlinear refraction in nanocrystalline silicon carbide films. JETP Letters, 2008, vol. 88, iss. 6, p. 442-444. https://doi.org/10.1134/S0021364008180094
Borshch A.A., Brodyn M.S., Starkov V.N., Rudenko V.N., Volkov V.I., Boyarchuk A.Yu., Semenov A.V. Broadband optical limiting in thin nanostructured silicon carbide films and its nature. Optics Communication, 2016, vol. 364, pp. 88-92. https://doi.org/10.1016/j.optcom.2015.11.040
Semenov A.V., Pashchenko V.O., Khirnyi V.F., Kozlovskyi А.А. Mateichenko P.V. Magnetism in nanocrystalline SiC films. Physica E, Low-dimensional Systems and Nanostructures, 2015, vol. 74, pp. 220-225. https://doi.org/10.1016/j.physe.2015.07.006
Kozlovskyi A., Semenov A., Scoryk S. Electron transport in nanocrystalline SiC films obtained by direct ion deposition. Superlattices and Microstructures, 2016, vol. 216, pp. 596-604. http://dx.doi.org/10.1016/j.spmi.2016.10.013
Semenov A. V., Lopin A. V., Puzikov V. M., Boriskin V. N. Effect of irradiation on the properties of nanocrystalline silicon carbide films. Semiconductors, 2009, vol. 43, iss. 10, pp. 1322-1327. https://doi.org/10.1134/S106378260910011X
Semenov A.V., Puzikov V.M., Golubova E.P., Baumer V.N., Dobrotvorskaya M.V. Low-temperature production of silicon carbide films of different polytypes. Semiconductors, 2009, vol. 43, iss 5, pp. 685-689. https://doi.org/10.1134/S1063782609050273
Ayzatsky M.I., Akchurin Yu.I., Beloglaso V.I., Biller E.Z., Borisk in V.N., Gurin V.A., Demidov N.V., Dovbnya A.N., Krivchikov B.P., Myfel V.B., Popenko V.A., Kushnir V.A., Levandovsky S.P., Mitrochenko V.V., Stepin D.L., Shendrik V.A., Savchenko A.N., Tolsto L.E., Terehov, B.A., Tur Yu.D., Vishnyakov V.A., Uvarov V.L., Zavada A.V. Electron linacs in NSC KIPT: R&D and application. Proc. 14th Conf.on Charged Particle Accelerators. Russia, Protvino, 1994, vol. 4, pp. 259-267.
Lopin, A. V., Semenov.A.V., Puzikov V. M. Optical properties of Silicon Carbide obtained by direct ion deposition. Functional materials, 2006, vol. 15, iss. 4, pp. 631-636.
Chakrabarti S., Ganduli D., Chaudhuri S. Optical properties of g-Fe2O3 nanoparticles dispersed on sol—gel silica spheres. Physica E: Low-dimensional Systems and Nanostructures, 2004, vol. 24, iss. 3-4, pp. 333-342. https://doi.org/10.1016/j.physe.2004.06.036.
Choyke W.J. Optical and electronic properties of SiC. The Physics and Chemistry of Carbides, Nitrides and Borides, NATO ASI Series, 1990, vol. 185, pp. 563-587.
Srikant V., Clarke D. R. On the optical band gap of zinc oxide. J. Appl. Phys, 1997, vol. 81, iss. 10, pp. 6357-6364. http://dx.doi.org/10.1063/1.367375.
Gorbatenko L. S., Novodvorsky O. A., Panchenko V. Ya., Khramova O. D., Cherebilo Ye. A., Lotin A. A., Wenzel C., Trumpaicka N., Bartha J. W. Characterization of ZnO:Ga and ZnO:N films prepared by PLD. Laser Physics, 2009, vol. 19, iss. 5, pp. 1152-1157. http://dx.doi.org/10.1134/S1054660X11080019
Mott N. F., Davis E. A. Electronic Processes in Non-Crystalline Materials. Oxford. Seiten, 1971, 437 p.
Semenov A.V., Lopin A.V., Puzikov V.M. [Lowtemperature production and optical properties of silicon carbide films]. Poverkhnost`. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya, 2004, iss. 9, pp. 99-106.
Lopin A.V., Semenov A.V., Puzikov V.M. [Optical temperature sensor based on a nanocrystalline SiC film]. Tekhnologiya i konstruirovanie v elektronnoi apparature, 2007, iss. 4, pp. 22.
Bockstedte M., Mattausch A., Pankratov O. Ab initio study of the annealing of vacancies and interstitials in cubic SiC: Vacancy interstitial recombination and aggregation of carbon interstitials. Phys. Rev. B, 2004, vol. 69, pp. 235202-235212. https://doi.org/10.4028/www.scientific.net/MSF.483-485.523.
Evans B. D., Pogatshnik G. J., Chen Y. Optical properties of lattice defects in a-Al2O3. Nucl. Instr. Meth. Phys. Res. B, 1994, vol. 91, pp. 258-262.— https://doi.org/10.1016/0168-583X(94)96227-8.
Evans B. D., Stapelbroek M. Optical properties of the F+-center in crystalline Al2O3. Phys. Rev. B, 1978, vol.18, iss. 12, pp. 7089-7098. https://doi.org/10.1103/PhysRevB.18.7089
Copyright (c) 2017 Semenov O. V., Lopin A. V., Boriskin V. N.

This work is licensed under a Creative Commons Attribution 4.0 International License.