Local trajectory parameters estimation and detection of moving targets in rayleigh noise

  • I. G. Prokopenko National Aviation University, Kyiv, Ukraine
  • V. Iu. Vovk National Aviation University, Kyiv, Ukraine
  • I. P. Omelchuk National Aviation University, Kyiv, Ukraine
  • Yu. D. Chirka National Aviation University, Kyiv, Ukraine
  • K. I. Prokopenko National Aviation University, Kyiv, Ukraine
Keywords: target detection, moving target, estimation, trajectory, track-before-detect, Rayleigh noise, Hough transform, least squares

Abstract

The problem of detection of moving targets and estimation of local trajectory parameters based on the analysis of sensor data in the form of two-dimensional image is considered. In accordance with the target and sensor models, the probability distribution of noise at the output of the detector is Rayleigh distribution, while the probability distribution of signal is Rice distribution. Two trajectory parameters estimation techniques are considered: ordinary least squares and Hough transform. A detection stage based on the integration of an input signal along an estimated trajectory is proposed. Statistical modelling was performed, and detection characteristics were obtained.

References

Li X. R., Bar-Shalom Y. Multiple-model estimation with variable structure. IEEE Trans. Autom. Control, 1996, vol. 41, no 4, pp. 478-492.

Ristic B., Arulampalam S., Gordon N. Beyond the Kalman Filter: Particle Filters for Tracking Applications, Artech House, 2004.

Viterbi A. J. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory, 1967, vol. 13, no 2, pp. 260-269.

Jang B., Rabiner L. An introduction to hidden Markov models. IEEE ASSP Mag, 1986, vol. 3, no 1, pp. 4-16.

Pohlig S. C. An algorithm for detection of moving optical targets. IEEE Trans. Aerosp. Electron. Syst, 1989, vol. 25, no 1, pp. 56–63.

Bruno M. G. S., Moura J. M. F. Multiframe detector/ tracker: Optimal performance. IEEE Trans. Aerosp. Electron. Syst, 2001, vol. 37, no 3, pp. 925-945.

Tonissen S. M., Bar-Shalom Y. Maximum likelihood track-before-detect with fluctuating target amplitude. IEEE Trans. Aerosp. Electron. Syst, 1998, vol. 34, no 3, pp. 796-809.

Salmond D. J., Birch H. A particle filter for trackbefore- detect. Proc. of the American Control Conf, USA, VA, Arlington, 2001, pp. 3755-3760.

Driessen H., Boers, Y. Efficient particle filter for jump Markov nonlinear systems. Radar, Sonar and Navigation, IEE Proceedings, 2005, vol. 152, no 5, pp. 323-326.

Rutten M. G., Gordon N. J., Maskell S. Recursive trackbefore- detect with target amplitude fluctuations. IEE Proc. Radar, Sonar and Navigation, 2005, vol. 152, no 5, pp. 345-352.

Rutten M. G., Gordon N. J., Maskell S. Efficient particle-based track-before-detect in Rayleigh noise. Proc. of the 7th Int. Conf. on Information Fusion, Sweden, Stockholm, 2004, pp. 693-700.

Streit R. L., Graham M. L., Walsh M. J. Multitarget tracking of distributed targets using histogram-PMHT. Digital Signal Processing, 2002, vol. 12, no 2-3, pp. 394-404.

Blanding W. R., Willett P. K., Bar-Shalom Y. Off-line and real-time methods for ML-PDA track validation. IEEE Trans. Signal Process, 2007, vol. 55, no 5, pp. 1994–2006.

Kirubarajan T., Bar-Shalom Y. Low observable target motion analysis using amplitude information. IEEE Trans. Aerosp. Electron. Syst, 1996, vol. 32, no 4, pp. 1367-1384.

Stone L. D., Barlow C. A., Corwin T. Bayesian Multiple Target Tracking, Norwood, MA: Artech House, 1999.

Colegrove S. B., Davis A. W., Ayliffe J. K. Track initiation and nearest neighbours incorporated into probabilistic data association. Journal of Electrical and Electronics Engineers, Australia, 1986, vol. 6, no 3, pp. 191-198.

Davey S. J., Gray D. A. Integrated track maintenance for the pmht via the hysteresis model. IEEE Trans. Aerosp. Electron. Syst, 2007, vol. 43, no 1, pp. 93–111.

Davey S. J., Rutten M. G., Cheung B. A comparison of detection performance for several Track-Before-Detect algorithms. Proc of the 11th Int. Conf. on Information Fusion, Germany, Cologne, 2008, pp. 1-8.

Leite E., Alves G., Seixas J. et al. Radar meteor detection: concept, data acquisition and online triggering. In Book: Wave Propagation. Ed. by Dr. Andrey Petrin, InTech, 2011, pp. 537-549. http://www.intechopen.com/books/wave-propagation/radar-meteor-detection-concept-dataacquisition-and-online-triggering.

Yilmaz A., Shafique K., Shah M. Target tracking in airborne forward looking infrared imagery. Proc. Image Vision Comput, 2003, vol. 21, no 7, pp. 623-635.

Savanevich V. E., Kozhuhov A. M., Briuhovetskii A. B. et al. [Asteroid detection method based on signal accumulation along trajectories with unknown parameters] Systemy obrobky informatsii: Zb. nauk. prats. HUPS, Kharkiv, 2011, no 92(2), pp. 137-144 (Ukr)]

Prokopenko I., Vovk V., Omelchuk I., Chirka Y. Tracking and detection of rapid moving targets. Proc. of the 14th International Radar Symposium (IRS), Germany, Dresden, 2013, vol. 2, pp. 768-773.

Chernov N., Lesort C. Least squares fitting of circles and lines, 2003. http://arxiv.org/abs/cs/0301001v1

Duda R. O., Hart P. E. Use of the Hough transformation to detect lines and curves in pictures. Comm. ACM, 1972, vol. 15, pp. 11-15.

Kuzmin S. Z. Osnovy teorii tsifrovoy obrabotki radiolokatsionnoy informatsii. [Fundamentals of the theory of digital radar data processing]. Moscow, Sovetskoie radio, 1974 (Rus)

Hart P. E. How the Hough transform was invented [DSP History]. IEEE Signal Processing Mag, 2009, vol. 26, no 6, pp. 18-22.

Ballard D. H. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition, 1981, vol. 13, no 2, pp. 111-122.

Vassileva B. Target detection and track formation algorithm for radar management and tracking benchmark with ECM. Reports of the Bulgarian Academy of Sciences, 2001, vol. 54, no 5, pp. 35-38.

Fardi B., Wanielik G. Hough transformation based approach for road border detection in infrared images. Intelligent Vehicles Symp., 2004 IEEE, Italy, Parma, 2004, pp. 549-554.

Published
2014-02-25
How to Cite
Prokopenko, I. G., Vovk, V. I., Omelchuk, I. P., Chirka, Y. D., & Prokopenko, K. I. (2014). Local trajectory parameters estimation and detection of moving targets in rayleigh noise. Technology and Design in Electronic Equipment, (1), 23-35. https://doi.org/10.15222/TKEA2014.1.23