Study of adsorption states in ZnO–Ag gas-sensitive ceramics using the ECTV curves method

  • A. Yu. Lyashkov Oles Gonchar Dnepropetrovsk National University, Ukraine
Keywords: ceramics, zinc oxide, Ag, vacuum, semiconductor, desorption, conductivity, Fermi level, band diagram

Abstract

The ZnO–Ag ceramic system as the material for semiconductor sensors of ethanol vapors was proposed quite a long time ago. The main goal of this work was to study surface electron states of this system and their relation with the electric properties of the material. The quantity of doping with Ag2O was changed in the range of 0.1–2.0% of mass. The increase of the Ag doping leads to a shift of the Fermi level down (closer to the valence zone). The paper presents research results on electrical properties of ZnO–Ag ceramics using the method of thermal vacuum curves of electrical conductivity. Changes in the electrical properties during heating in vacuum in the temperature range of 300–800 K were obtained and discussed. The increase of Tvac leads to removal of oxygen from the surface of samples The oxygen is adsorbed in the form of O2 and O ions and is the acceptor for ZnO. This results in the lowering of the inter-crystallite potential barriers in the ceramic. The surface electron states (SES) above the Fermi level are virtually uncharged. The increase of the conductivity causes desorption of oxygen from the SES settled below the Fermi level of the semiconductor. The model allows evaluating the depth of the Fermi level in the inhomogeneous semiconductor materials.

References

Heiland G., Kohl C.-D.. Device for determining and/or measuring alcohol content in a gas and method of manufacturing a semiconductor body for use in alcohol detection. Patent 4017792 USA. 12.04.1977.

Kuo S.-T., Tuan W.-H., Shieh J., Wang S.-F. Effect of Ag on the microstructure and electrical properties of ZnO. Journal of the European Ceramic Society, 2007, vol. 27, pp. 4521-4527. https://doi.org/10.1016/j.jeurceramsoc.2007.02.215

Lyashkov A. Yu., Tonkoshkur A. S., Aguilar-Martinez J. A., Glot A. B. ZnO–Ag ceramics for ethanol sensors. Ceramics International, 2013, vol. 39, pp. 2323-2330. https://doi.org/10.1016/j.ceramint.2012.08.080

Khomchenko V.S., Kryshtab T.G., Savin A.K. et al. Fabrication and properties of ZnO:Cu and ZnO:Ag thin films. Superlattices and Microstructures, 2007, vol. 42, pp. 94-98. https://doi.org/10.1016/j.spmi.2007.04.016

Duan L., Gao W., Chen R., Fu Z. Influence of postannealing conditions on properties of ZnO:Ag films. Solid State Communications, 2008, vol. 145, pp. 479-481. https://doi.org/10.1016/j.ssc.2007.12.013

Gruzintsev A. N., Volkov V. T., Yakimov E. E. Photoelectric properties of ZnO films doped with Cu and Ag acceptor impurities. Semiconductors, 2003, vol. 37, iss. 3, pp 259-262. https://doi.org/10.1134/1.1561514

Takayama H., Fujitsu S. Gas-sensitive Ag ion conduction in semiconducting ZnO thin films. Solid State Ionics, 1989, vol. 35, pp. 411-415. https://doi.org/10.1016/0167-2738(89)90329-9

Tarwal N. L., Rajgure A. V., Patil J. Y. et al. A selective ethanol gas sensor based on spray-derived Ag–ZnO thin films. Journal of Materials Science, 2013, vol. 48, iss. 20, pp. 7274-7282. https://doi.org/10.1007/s10853-013-7547-7

Lin T.-H., Chen T.-T., Cheng C.-L. et al. Selectively enhanced band gap emission in ZnO/Ag2O nanocomposites. Optics express, 2009, vol. 17, no 6, pp. 4342-4347. https://doi.org/10.1364/OE.17.004342

Irimpan L., Nampoori V.P.N., Radhakrishnan P. Spectral and nonlinear optical characteristics of nanocomposites of ZnO–Ag. Chemical Physics Letters, 2008, vol. 455, pp. 265-269. https://doi.org/10.1016/j.cplett.2008.02.097

Kim J. Y., Park H.-H., Reddy A. S. et al. Electromagnetic shielder compatible ZnO transparent conducting oxides hybridized with various sizes of Ag metal nanoparticles. Ceramics International, 2008, vol. 34, iss. 4, pp. 1055–1058. https://doi.org/10.1016/j.ceramint.2007.09.075

Song Y.-W., Kim K., Lee S. Y. Morphology transition of Ag-doped ZnO nanostructures in hot-walled pulsed laser deposition. Thin Solid Films, 2009, vol. 518, iss. 4, pp. 1318–1322. https://doi.org/10.1016/j.tsf.2009.07.206

Sun Z.-P., Liu L., Zhang L., Jia D.-Z. Rapid synthesis of ZnO nanorods by one-step, room-temperature, solid-state reaction and their gas-sensing properties. Nanotechnology, 2006, vol. 17, pp. 2266-2270. https://doi.org/10.1088/0957-4484/17/9/032

Zong Y., Cao Y., Jia D. et al. Facile synthesis of Ag/ZnO nanorods using Ag/C cables as templates and their gas-sensing properties. Materials Letters, 2010, vol. 64, iss 3, pp. 243-245. https://doi.org/10.1016/j.matlet.2009.09.032

Cui J., Wang D., Xie T., Lin Y. Study on photoelectric gas-sensing property and photo-generated carrier behavior of Ag–ZnO at the room temperature. Sensors and Actuators B, 2013, vol. 186, pp. 165-171. https://doi.org/10.1016/j.snb.2013.05.088

Lyashkov A. Yu., Tonkoshkur A.S. Gas sensitivity of ZnO-based ceramics to vapors of saturated monohydric alcohols. Materials Chemistry and Physics, 2013, vol. 140, iss. 1, pp. 31-36. https://doi.org/10.1016/j.matchemphys.2013.02.018

Obvintseva L.A. Metal oxide semiconductor sensors for determination of reactive gas impurities in air. Russian Journal of General Chemistry, 2008, vol. 78, iss. 12, pp. 2545-2555. https://doi.org/10.1134/S1070363208120347

Okadzaki K. Tekhnologiya keramicheskikh dielektrikov [Ceramic dielectrics technology], Moskow, Energiya, 1976. (Rus)

Dulov A. A., Abramova L. A. [Сapability of electrical conductivity method in studies of catalysts] Itogi nauki i tekhniki. Ser. kinetika i kataliz, 1984, vol. 12, pp. 144-194. (Rus)

Makarov V. O., Tonkoshkur A. S., Chernenko I. M. [Effect of vacuum heat treatment on the zinc oxide electrical conductivity] Izv. AN SSSR. Neorganicheskie materialy, 1987, vol. 23, no 12, pp. 2016-2020. (Rus)

Valeev Kh.S., Kvaskov V.B. Nelineinye metalloksidnye poluprovodniki [Nonlinear metal oxide semiconductors] Мoskow, Energoizdat, 1983. (Rus)

Yadav B.C., Srivastava R., Dwivedi C.D., Pramanik P. Synthesis of nano-sized ZnO using drop wise method and its performance as moisture sensor. Sensors and Actuators A: Physical, 2009, vol. 153, iss. 2, pp. 137-141. https://doi.org/10.1016/j.sna.2009.05.010

Myasnikov I. A., Sukharev V. Ya., Kupriyanov L. Yu., Zav'yalov S. A. Poluprovodnikovye sensory v fizikokhimicheskikh issledovaniyakh [Semiconductor sensors in physical-chemical research], Moskow, Nauka, 1991. (Rus)

Ivanchenko A. V., Tonkoshkur A. S., Makarov V. O. Desorption thermal degradation model of zinc oxide ceramics. Journal of the European Ceramic Society, 2004, vol. 24, iss. 15–16, pp. 3709-3712. https://doi.org/10.1016/j. jeurceramsoc.2003.12.004

Makarov V.O., Tonkoshkur A.S., Chernenko I.M. Effect of vacuum heat treatment on the electrical conductivity of zinc oxide. Inorganic Materials, 1988, vol. 23, iss. 12, pp. 1769-1773.

Amorfnye i polikristallicheskie poluprovodniki [Amorphous and polycrystalline semi-conductors]. Ed. by V. Heivang, Moskow, Mir, 1987.

Mikroelektronni sensory fizichnykh velichin vol. 1 [Microelectronic physical quantity sensors] Ed. by Z. Yu. Gotra. L'viv: Liga-Pres, 2002. (Ukr)

Chengxiang W., Longwei Y., Luyuan Z. et al. Metal oxide gas sensors: sensitivity and influencing factors. Sensors, 2010, vol. 10, iss. 3, pp. 2088-2106. https://doi.org/10.3390/s100302088

Khandetskyi V.S., Tonkoshkur Yu. A. Basic models of isothermal depolarization analysis for diagnostics of heterogeneous materials. Multidiscipline Modeling in Materials and Structures, 2012, vol. 8, pp. 105-119. https://doi.org/10.1108/15736101211236001

Paraguay F. D., Miki-Yoshida M., Morales J. et al. Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour. Thin Solid Films, 2000, vol. 373, iss. 1–2, pp. 137–140. https://doi.org/10.1016/S0040-6090(00)01120-2

Published
2013-12-19
How to Cite
Lyashkov, A. Y. (2013). Study of adsorption states in ZnO–Ag gas-sensitive ceramics using the ECTV curves method. Technology and Design in Electronic Equipment, (6), 46-51. https://doi.org/10.15222/TKEA2013.6.46